state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case refine'_1.refine'_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : KernelFork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ (parallelPair f 0 ⋙ G).map WalkingParallelPairHom.right ≫ (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)).hom = (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)).hom ≫ (parallelPair (G.map f) 0).map WalkingParallelPairHom.right
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
simp
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.51_0.Ox2DGCW1z12SA2j
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case refine'_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : KernelFork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ (Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c) ≅ map c G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp
exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat)
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.51_0.Ox2DGCW1z12SA2j
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : KernelFork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ∀ (j : WalkingParallelPair), ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).π.app j = (Iso.refl ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).pt).hom ≫ (map c G).π.app j
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by
rintro (_|_)
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.51_0.Ox2DGCW1z12SA2j
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case zero C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : KernelFork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).π.app WalkingParallelPair.zero = (Iso.refl ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).pt).hom ≫ (map c G).π.app WalkingParallelPair.zero
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;>
aesop_cat
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.51_0.Ox2DGCW1z12SA2j
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case one C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : KernelFork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).π.app WalkingParallelPair.one = (Iso.refl ((Cones.postcompose (parallelPair.ext (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair f 0 ⋙ G).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ 0)).hom).obj (G.mapCone c)).pt).hom ≫ (map c G).π.app WalkingParallelPair.one
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;>
aesop_cat
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.51_0.Ox2DGCW1z12SA2j
/-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 ⊢ G.map h ≫ G.map f = 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by
simp only [← G.map_comp, w, Functor.map_zero]
/-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.73_0.Ox2DGCW1z12SA2j
/-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁵ : Category.{v₁, u₁} C inst✝⁴ : HasZeroMorphisms C D : Type u₂ inst✝³ : Category.{v₂, u₂} D inst✝² : HasZeroMorphisms D G : C ⥤ D inst✝¹ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝ : PreservesLimit (parallelPair f 0) G l : IsLimit (KernelFork.ofι h w) ⊢ G.map h ≫ G.map f = 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by
simp only [← G.map_comp, w, Functor.map_zero]
/-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.88_0.Ox2DGCW1z12SA2j
/-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝¹ : HasKernel f inst✝ : PreservesLimit (parallelPair f 0) G ⊢ G.map (kernel.ι f) ≫ G.map f = G.map (kernel.ι f) ≫ 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by
simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]
/-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.103_0.Ox2DGCW1z12SA2j
/-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝¹ : HasKernel f inst✝ : HasKernel (G.map f) i : IsIso (kernelComparison f G) ⊢ PreservesLimit (parallelPair f 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by
apply preservesLimitOfPreservesLimitCone (kernelIsKernel f)
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.119_0.Ox2DGCW1z12SA2j
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝¹ : HasKernel f inst✝ : HasKernel (G.map f) i : IsIso (kernelComparison f G) ⊢ IsLimit (G.mapCone (Fork.ofι (kernel.ι f) (_ : kernel.ι f ≫ f = kernel.ι f ≫ 0)))
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f)
apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f)
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.119_0.Ox2DGCW1z12SA2j
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝¹ : HasKernel f inst✝ : HasKernel (G.map f) i : IsIso (kernelComparison f G) ⊢ IsLimit (KernelFork.ofι (G.map (kernel.ι f)) (_ : G.map (kernel.ι f) ≫ G.map f = 0))
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _
exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.119_0.Ox2DGCW1z12SA2j
/-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝² : HasKernel f inst✝¹ : HasKernel (G.map f) inst✝ : PreservesLimit (parallelPair f 0) G ⊢ (iso G f).hom = kernelComparison f G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by
rw [← cancel_mono (kernel.ι _)]
@[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.138_0.Ox2DGCW1z12SA2j
@[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝² : HasKernel f inst✝¹ : HasKernel (G.map f) inst✝ : PreservesLimit (parallelPair f 0) G ⊢ (iso G f).hom ≫ kernel.ι (G.map f) = kernelComparison f G ≫ kernel.ι (G.map f)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)]
simp [PreservesKernel.iso]
@[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.138_0.Ox2DGCW1z12SA2j
@[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝² : HasKernel f inst✝¹ : HasKernel (G.map f) inst✝ : PreservesLimit (parallelPair f 0) G ⊢ IsIso (kernelComparison f G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by
rw [← PreservesKernel.iso_hom]
instance : IsIso (kernelComparison f G) := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.144_0.Ox2DGCW1z12SA2j
instance : IsIso (kernelComparison f G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝² : HasKernel f inst✝¹ : HasKernel (G.map f) inst✝ : PreservesLimit (parallelPair f 0) G ⊢ IsIso (PreservesKernel.iso G f).hom
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom]
infer_instance
instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.144_0.Ox2DGCW1z12SA2j
instance : IsIso (kernelComparison f G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝¹⁰ : Category.{v₁, u₁} C inst✝⁹ : HasZeroMorphisms C D : Type u₂ inst✝⁸ : Category.{v₂, u₂} D inst✝⁷ : HasZeroMorphisms D G : C ⥤ D inst✝⁶ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝⁵ : HasKernel f inst✝⁴ : HasKernel (G.map f) inst✝³ : PreservesLimit (parallelPair f 0) G X' Y' : C g : X' ⟶ Y' inst✝² : HasKernel g inst✝¹ : HasKernel (G.map g) inst✝ : PreservesLimit (parallelPair g 0) G p : X ⟶ X' q : Y ⟶ Y' hpq : f ≫ q = p ≫ g ⊢ G.map f ≫ G.map q = G.map p ≫ G.map g
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by
rw [← G.map_comp, hpq, G.map_comp]
@[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.148_0.Ox2DGCW1z12SA2j
@[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝¹⁰ : Category.{v₁, u₁} C inst✝⁹ : HasZeroMorphisms C D : Type u₂ inst✝⁸ : Category.{v₂, u₂} D inst✝⁷ : HasZeroMorphisms D G : C ⥤ D inst✝⁶ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Z ⟶ X w : h ≫ f = 0 inst✝⁵ : HasKernel f inst✝⁴ : HasKernel (G.map f) inst✝³ : PreservesLimit (parallelPair f 0) G X' Y' : C g : X' ⟶ Y' inst✝² : HasKernel g inst✝¹ : HasKernel (G.map g) inst✝ : PreservesLimit (parallelPair g 0) G p : X ⟶ X' q : Y ⟶ Y' hpq : f ≫ q = p ≫ g ⊢ kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (_ : G.map f ≫ G.map q = G.map p ≫ G.map g) ≫ (PreservesKernel.iso G g).inv = (PreservesKernel.iso G f).inv ≫ G.map (kernel.map f g p q hpq)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by
rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map]
@[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.148_0.Ox2DGCW1z12SA2j
@[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ G.map f ≫ G.map (Cofork.π c) = 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by
rw [← G.map_comp, c.condition, G.map_zero]
@[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.166_0.Ox2DGCW1z12SA2j
@[reassoc (attr
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ IsColimit (G.mapCocone c) ≃ IsColimit (map c G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by
refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _)
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case refine'_1 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ parallelPair (G.map f) 0 ≅ parallelPair f 0 ⋙ G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _)
refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _)
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case refine'_1.refine'_1 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ (parallelPair (G.map f) 0).map WalkingParallelPairHom.left ≫ (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)).hom = (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)).hom ≫ (parallelPair f 0 ⋙ G).map WalkingParallelPairHom.left
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
simp
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case refine'_1.refine'_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ (parallelPair (G.map f) 0).map WalkingParallelPairHom.right ≫ (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)).hom = (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)).hom ≫ (parallelPair f 0 ⋙ G).map WalkingParallelPairHom.right
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
simp
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case refine'_2 C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ (Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c) ≅ map c G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp
exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat)
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ∀ (j : WalkingParallelPair), ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).ι.app j ≫ (Iso.refl ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).pt).hom = (map c G).ι.app j
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by
rintro (_|_)
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case zero C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).ι.app WalkingParallelPair.zero ≫ (Iso.refl ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).pt).hom = (map c G).ι.app WalkingParallelPair.zero
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;>
aesop_cat
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
case one C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C f : X ⟶ Y c : CokernelCofork f G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G ⊢ ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).ι.app WalkingParallelPair.one ≫ (Iso.refl ((Cocones.precompose (parallelPair.ext (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.zero)) (Iso.refl ((parallelPair (G.map f) 0).obj WalkingParallelPair.one)) (_ : G.map f ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map f) (_ : 0 ≫ 𝟙 (G.obj Y) = 𝟙 (G.obj X) ≫ G.map 0)).hom).obj (G.mapCocone c)).pt).hom = (map c G).ι.app WalkingParallelPair.one
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;>
aesop_cat
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;>
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.178_0.Ox2DGCW1z12SA2j
/-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 ⊢ G.map f ≫ G.map h = 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by
simp only [← G.map_comp, w, Functor.map_zero]
/-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.200_0.Ox2DGCW1z12SA2j
/-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁵ : Category.{v₁, u₁} C inst✝⁴ : HasZeroMorphisms C D : Type u₂ inst✝³ : Category.{v₂, u₂} D inst✝² : HasZeroMorphisms D G : C ⥤ D inst✝¹ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝ : PreservesColimit (parallelPair f 0) G l : IsColimit (CokernelCofork.ofπ h w) ⊢ G.map f ≫ G.map h = 0
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by
simp only [← G.map_comp, w, Functor.map_zero]
/-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.215_0.Ox2DGCW1z12SA2j
/-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝¹ : HasCokernel f inst✝ : PreservesColimit (parallelPair f 0) G ⊢ G.map f ≫ G.map (cokernel.π f) = 0 ≫ G.map (cokernel.π f)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by
simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]
/-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.230_0.Ox2DGCW1z12SA2j
/-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝¹ : HasCokernel f inst✝ : HasCokernel (G.map f) i : IsIso (cokernelComparison f G) ⊢ PreservesColimit (parallelPair f 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by
apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f)
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.247_0.Ox2DGCW1z12SA2j
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝¹ : HasCokernel f inst✝ : HasCokernel (G.map f) i : IsIso (cokernelComparison f G) ⊢ IsColimit (G.mapCocone (Cofork.ofπ (cokernel.π f) (_ : f ≫ cokernel.π f = 0 ≫ cokernel.π f)))
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f)
apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f)
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.247_0.Ox2DGCW1z12SA2j
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁶ : Category.{v₁, u₁} C inst✝⁵ : HasZeroMorphisms C D : Type u₂ inst✝⁴ : Category.{v₂, u₂} D inst✝³ : HasZeroMorphisms D G : C ⥤ D inst✝² : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝¹ : HasCokernel f inst✝ : HasCokernel (G.map f) i : IsIso (cokernelComparison f G) ⊢ IsColimit (CokernelCofork.ofπ (G.map (cokernel.π f)) (_ : G.map f ≫ G.map (cokernel.π f) = 0))
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _
exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.247_0.Ox2DGCW1z12SA2j
/-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝² : HasCokernel f inst✝¹ : HasCokernel (G.map f) inst✝ : PreservesColimit (parallelPair f 0) G ⊢ (iso G f).inv = cokernelComparison f G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by
rw [← cancel_epi (cokernel.π _)]
@[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.267_0.Ox2DGCW1z12SA2j
@[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝² : HasCokernel f inst✝¹ : HasCokernel (G.map f) inst✝ : PreservesColimit (parallelPair f 0) G ⊢ cokernel.π (G.map f) ≫ (iso G f).inv = cokernel.π (G.map f) ≫ cokernelComparison f G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)]
simp [PreservesCokernel.iso]
@[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.267_0.Ox2DGCW1z12SA2j
@[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝² : HasCokernel f inst✝¹ : HasCokernel (G.map f) inst✝ : PreservesColimit (parallelPair f 0) G ⊢ IsIso (cokernelComparison f G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by
rw [← PreservesCokernel.iso_inv]
instance : IsIso (cokernelComparison f G) := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.273_0.Ox2DGCW1z12SA2j
instance : IsIso (cokernelComparison f G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁷ : Category.{v₁, u₁} C inst✝⁶ : HasZeroMorphisms C D : Type u₂ inst✝⁵ : Category.{v₂, u₂} D inst✝⁴ : HasZeroMorphisms D G : C ⥤ D inst✝³ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝² : HasCokernel f inst✝¹ : HasCokernel (G.map f) inst✝ : PreservesColimit (parallelPair f 0) G ⊢ IsIso (PreservesCokernel.iso G f).inv
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv]
infer_instance
instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.273_0.Ox2DGCW1z12SA2j
instance : IsIso (cokernelComparison f G)
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝¹⁰ : Category.{v₁, u₁} C inst✝⁹ : HasZeroMorphisms C D : Type u₂ inst✝⁸ : Category.{v₂, u₂} D inst✝⁷ : HasZeroMorphisms D G : C ⥤ D inst✝⁶ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝⁵ : HasCokernel f inst✝⁴ : HasCokernel (G.map f) inst✝³ : PreservesColimit (parallelPair f 0) G X' Y' : C g : X' ⟶ Y' inst✝² : HasCokernel g inst✝¹ : HasCokernel (G.map g) inst✝ : PreservesColimit (parallelPair g 0) G p : X ⟶ X' q : Y ⟶ Y' hpq : f ≫ q = p ≫ g ⊢ G.map f ≫ G.map q = G.map p ≫ G.map g
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by
rw [← G.map_comp, hpq, G.map_comp]
@[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.277_0.Ox2DGCW1z12SA2j
@[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝¹⁰ : Category.{v₁, u₁} C inst✝⁹ : HasZeroMorphisms C D : Type u₂ inst✝⁸ : Category.{v₂, u₂} D inst✝⁷ : HasZeroMorphisms D G : C ⥤ D inst✝⁶ : Functor.PreservesZeroMorphisms G X Y Z : C f : X ⟶ Y h : Y ⟶ Z w : f ≫ h = 0 inst✝⁵ : HasCokernel f inst✝⁴ : HasCokernel (G.map f) inst✝³ : PreservesColimit (parallelPair f 0) G X' Y' : C g : X' ⟶ Y' inst✝² : HasCokernel g inst✝¹ : HasCokernel (G.map g) inst✝ : PreservesColimit (parallelPair g 0) G p : X ⟶ X' q : Y ⟶ Y' hpq : f ≫ q = p ≫ g ⊢ (PreservesCokernel.iso G f).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (_ : G.map f ≫ G.map q = G.map p ≫ G.map g) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G g).hom
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by
rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv]
@[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.277_0.Ox2DGCW1z12SA2j
@[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cone (parallelPair 0 0) hc : IsLimit c ⊢ IsLimit (G.mapCone c)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by
have := KernelFork.IsLimit.isIso_ι c hc rfl
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.293_0.Ox2DGCW1z12SA2j
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cone (parallelPair 0 0) hc : IsLimit c this : IsIso (Fork.ι c) ⊢ IsLimit (G.mapCone c)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl
refine' (KernelFork.isLimitMapConeEquiv c G).symm _
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.293_0.Ox2DGCW1z12SA2j
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cone (parallelPair 0 0) hc : IsLimit c this : IsIso (Fork.ι c) ⊢ IsLimit (KernelFork.map c G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _
refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.293_0.Ox2DGCW1z12SA2j
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cone (parallelPair 0 0) hc : IsLimit c this : IsIso (Fork.ι c) ⊢ KernelFork.ofι (𝟙 (G.obj X)) (_ : 𝟙 (G.obj X) ≫ G.map 0 = 0) ≅ KernelFork.map c G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _
exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp))
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.293_0.Ox2DGCW1z12SA2j
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cone (parallelPair 0 0) hc : IsLimit c this : IsIso (Fork.ι c) ⊢ (G.mapIso (asIso (Fork.ι c))).symm.hom ≫ Fork.ι (KernelFork.map c G) = Fork.ι (KernelFork.ofι (𝟙 (G.obj X)) (_ : 𝟙 (G.obj X) ≫ G.map 0 = 0))
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by
simp
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.293_0.Ox2DGCW1z12SA2j
noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cocone (parallelPair 0 0) hc : IsColimit c ⊢ IsColimit (G.mapCocone c)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by
have := CokernelCofork.IsColimit.isIso_π c hc rfl
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.301_0.Ox2DGCW1z12SA2j
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cocone (parallelPair 0 0) hc : IsColimit c this : IsIso (Cofork.π c) ⊢ IsColimit (G.mapCocone c)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl
refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.301_0.Ox2DGCW1z12SA2j
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cocone (parallelPair 0 0) hc : IsColimit c this : IsIso (Cofork.π c) ⊢ IsColimit (CokernelCofork.map c G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _
refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.301_0.Ox2DGCW1z12SA2j
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cocone (parallelPair 0 0) hc : IsColimit c this : IsIso (Cofork.π c) ⊢ CokernelCofork.ofπ (𝟙 (G.obj Y)) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 0) ≅ CokernelCofork.map c G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _
exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by simp))
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.301_0.Ox2DGCW1z12SA2j
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G c : Cocone (parallelPair 0 0) hc : IsColimit c this : IsIso (Cofork.π c) ⊢ Cofork.π (CokernelCofork.ofπ (𝟙 (G.obj Y)) (_ : G.map 0 ≫ 𝟙 (G.obj Y) = 0)) ≫ (G.mapIso (asIso (Cofork.π c))).hom = Cofork.π (CokernelCofork.map c G)
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by
simp
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.301_0.Ox2DGCW1z12SA2j
noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G f : X ⟶ Y hf : f = 0 ⊢ PreservesLimit (parallelPair f 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by simp)) variable {X Y} /-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by
rw [hf]
/-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.311_0.Ox2DGCW1z12SA2j
/-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G f : X ⟶ Y hf : f = 0 ⊢ PreservesLimit (parallelPair 0 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by simp)) variable {X Y} /-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by rw [hf]
infer_instance
/-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by rw [hf]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.311_0.Ox2DGCW1z12SA2j
/-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G f : X ⟶ Y hf : f = 0 ⊢ PreservesColimit (parallelPair f 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by simp)) variable {X Y} /-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by rw [hf] infer_instance /-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G := by
rw [hf]
/-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G := by
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.317_0.Ox2DGCW1z12SA2j
/-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : HasZeroMorphisms C D : Type u₂ inst✝² : Category.{v₂, u₂} D inst✝¹ : HasZeroMorphisms D X Y : C G : C ⥤ D inst✝ : Functor.PreservesZeroMorphisms G f : X ⟶ Y hf : f = 0 ⊢ PreservesColimit (parallelPair 0 0) G
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Shapes.Kernels import Mathlib.CategoryTheory.Limits.Preserves.Shapes.Zero #align_import category_theory.limits.preserves.shapes.kernels from "leanprover-community/mathlib"@"956af7c76589f444f2e1313911bad16366ea476d" /-! # Preserving (co)kernels Constructions to relate the notions of preserving (co)kernels and reflecting (co)kernels to concrete (co)forks. In particular, we show that `kernel_comparison f g G` is an isomorphism iff `G` preserves the limit of the parallel pair `f,0`, as well as the dual result. -/ noncomputable section universe v₁ v₂ u₁ u₂ open CategoryTheory CategoryTheory.Category CategoryTheory.Limits variable {C : Type u₁} [Category.{v₁} C] [HasZeroMorphisms C] variable {D : Type u₂} [Category.{v₂} D] [HasZeroMorphisms D] namespace CategoryTheory.Limits namespace KernelFork variable {X Y : C} {f : X ⟶ Y} (c : KernelFork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map c.ι ≫ G.map f = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A kernel fork for `f` is mapped to a kernel fork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : KernelFork (G.map f) := KernelFork.ofι (G.map c.ι) (c.map_condition G) @[simp] lemma map_ι : (c.map G).ι = G.map c.ι := rfl /-- The underlying cone of a kernel fork is mapped to a limit cone if and only if the mapped kernel fork is limit. -/ def isLimitMapConeEquiv : IsLimit (G.mapCone c) ≃ IsLimit (c.map G) := by refine' (IsLimit.postcomposeHomEquiv _ _).symm.trans (IsLimit.equivIsoLimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A limit kernel fork is mapped to a limit kernel fork by a functor `G` when this functor preserves the corresponding limit. -/ def mapIsLimit (hc : IsLimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesLimit (parallelPair f 0) G] : IsLimit (c.map G) := c.isLimitMapConeEquiv G (isLimitOfPreserves G hc) end KernelFork section Kernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Z ⟶ X} (w : h ≫ f = 0) /-- The map of a kernel fork is a limit iff the kernel fork consisting of the mapped morphisms is a limit. This essentially lets us commute `KernelFork.ofι` with `Functor.mapCone`. This is a variant of `isLimitMapConeForkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitMapConeForkEquiv' : IsLimit (G.mapCone (KernelFork.ofι h w)) ≃ IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := KernelFork.isLimitMapConeEquiv _ _ #align category_theory.limits.is_limit_map_cone_fork_equiv' CategoryTheory.Limits.isLimitMapConeForkEquiv' /-- The property of preserving kernels expressed in terms of kernel forks. This is a variant of `isLimitForkMapOfIsLimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isLimitForkMapOfIsLimit' [PreservesLimit (parallelPair f 0) G] (l : IsLimit (KernelFork.ofι h w)) : IsLimit (KernelFork.ofι (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Fork (G.map f) 0) := isLimitMapConeForkEquiv' G w (PreservesLimit.preserves l) #align category_theory.limits.is_limit_fork_map_of_is_limit' CategoryTheory.Limits.isLimitForkMapOfIsLimit' variable (f) [HasKernel f] /-- If `G` preserves kernels and `C` has them, then the fork constructed of the mapped morphisms of a kernel fork is a limit. -/ def isLimitOfHasKernelOfPreservesLimit [PreservesLimit (parallelPair f 0) G] : IsLimit (Fork.ofι (G.map (kernel.ι f)) (by simp only [← G.map_comp, kernel.condition, comp_zero, Functor.map_zero]) : Fork (G.map f) 0) := isLimitForkMapOfIsLimit' G (kernel.condition f) (kernelIsKernel f) #align category_theory.limits.is_limit_of_has_kernel_of_preserves_limit CategoryTheory.Limits.isLimitOfHasKernelOfPreservesLimit instance [PreservesLimit (parallelPair f 0) G] : HasKernel (G.map f) where exists_limit := ⟨⟨_, isLimitOfHasKernelOfPreservesLimit G f⟩⟩ variable [HasKernel (G.map f)] /-- If the kernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the kernel of `f`. -/ def PreservesKernel.ofIsoComparison [i : IsIso (kernelComparison f G)] : PreservesLimit (parallelPair f 0) G := by apply preservesLimitOfPreservesLimitCone (kernelIsKernel f) apply (isLimitMapConeForkEquiv' G (kernel.condition f)).symm _ exact @IsLimit.ofPointIso _ _ _ _ _ _ _ (kernelIsKernel (G.map f)) i #align category_theory.limits.preserves_kernel.of_iso_comparison CategoryTheory.Limits.PreservesKernel.ofIsoComparison variable [PreservesLimit (parallelPair f 0) G] /-- If `G` preserves the kernel of `f`, then the kernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesKernel.iso : G.obj (kernel f) ≅ kernel (G.map f) := IsLimit.conePointUniqueUpToIso (isLimitOfHasKernelOfPreservesLimit G f) (limit.isLimit _) #align category_theory.limits.preserves_kernel.iso CategoryTheory.Limits.PreservesKernel.iso @[simp] theorem PreservesKernel.iso_hom : (PreservesKernel.iso G f).hom = kernelComparison f G := by rw [← cancel_mono (kernel.ι _)] simp [PreservesKernel.iso] #align category_theory.limits.preserves_kernel.iso_hom CategoryTheory.Limits.PreservesKernel.iso_hom instance : IsIso (kernelComparison f G) := by rw [← PreservesKernel.iso_hom] infer_instance @[reassoc] theorem kernel_map_comp_preserves_kernel_iso_inv {X' Y' : C} (g : X' ⟶ Y') [HasKernel g] [HasKernel (G.map g)] [PreservesLimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : kernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) ≫ (PreservesKernel.iso G _).inv = (PreservesKernel.iso G _).inv ≫ G.map (kernel.map f g p q hpq) := by rw [Iso.comp_inv_eq, Category.assoc, PreservesKernel.iso_hom, Iso.eq_inv_comp, PreservesKernel.iso_hom, kernelComparison_comp_kernel_map] #align category_theory.limits.kernel_map_comp_preserves_kernel_iso_inv CategoryTheory.Limits.kernel_map_comp_preserves_kernel_iso_inv end Kernels namespace CokernelCofork variable {X Y : C} {f : X ⟶ Y} (c : CokernelCofork f) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] @[reassoc (attr := simp)] lemma map_condition : G.map f ≫ G.map c.π = 0 := by rw [← G.map_comp, c.condition, G.map_zero] /-- A cokernel cofork for `f` is mapped to a cokernel cofork for `G.map f` if `G` is a functor which preserves zero morphisms. -/ def map : CokernelCofork (G.map f) := CokernelCofork.ofπ (G.map c.π) (c.map_condition G) @[simp] lemma map_π : (c.map G).π = G.map c.π := rfl /-- The underlying cocone of a cokernel cofork is mapped to a colimit cocone if and only if the mapped cokernel cofork is colimit. -/ def isColimitMapCoconeEquiv : IsColimit (G.mapCocone c) ≃ IsColimit (c.map G) := by refine' (IsColimit.precomposeHomEquiv _ _).symm.trans (IsColimit.equivIsoColimit _) refine' parallelPair.ext (Iso.refl _) (Iso.refl _) _ _ <;> simp exact Cocones.ext (Iso.refl _) (by rintro (_|_) <;> aesop_cat) /-- A colimit cokernel cofork is mapped to a colimit cokernel cofork by a functor `G` when this functor preserves the corresponding colimit. -/ def mapIsColimit (hc : IsColimit c) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] [PreservesColimit (parallelPair f 0) G] : IsColimit (c.map G) := c.isColimitMapCoconeEquiv G (isColimitOfPreserves G hc) end CokernelCofork section Cokernels variable (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] {X Y Z : C} {f : X ⟶ Y} {h : Y ⟶ Z} (w : f ≫ h = 0) /-- The map of a cokernel cofork is a colimit iff the cokernel cofork consisting of the mapped morphisms is a colimit. This essentially lets us commute `CokernelCofork.ofπ` with `Functor.mapCocone`. This is a variant of `isColimitMapCoconeCoforkEquiv` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitMapCoconeCoforkEquiv' : IsColimit (G.mapCocone (CokernelCofork.ofπ h w)) ≃ IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := CokernelCofork.isColimitMapCoconeEquiv _ _ #align category_theory.limits.is_colimit_map_cocone_cofork_equiv' CategoryTheory.Limits.isColimitMapCoconeCoforkEquiv' /-- The property of preserving cokernels expressed in terms of cokernel coforks. This is a variant of `isColimitCoforkMapOfIsColimit` for equalizers, which we can't use directly between `G.map 0 = 0` does not hold definitionally. -/ def isColimitCoforkMapOfIsColimit' [PreservesColimit (parallelPair f 0) G] (l : IsColimit (CokernelCofork.ofπ h w)) : IsColimit (CokernelCofork.ofπ (G.map h) (by simp only [← G.map_comp, w, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitMapCoconeCoforkEquiv' G w (PreservesColimit.preserves l) #align category_theory.limits.is_colimit_cofork_map_of_is_colimit' CategoryTheory.Limits.isColimitCoforkMapOfIsColimit' variable (f) [HasCokernel f] /-- If `G` preserves cokernels and `C` has them, then the cofork constructed of the mapped morphisms of a cokernel cofork is a colimit. -/ def isColimitOfHasCokernelOfPreservesColimit [PreservesColimit (parallelPair f 0) G] : IsColimit (Cofork.ofπ (G.map (cokernel.π f)) (by simp only [← G.map_comp, cokernel.condition, zero_comp, Functor.map_zero]) : Cofork (G.map f) 0) := isColimitCoforkMapOfIsColimit' G (cokernel.condition f) (cokernelIsCokernel f) #align category_theory.limits.is_colimit_of_has_cokernel_of_preserves_colimit CategoryTheory.Limits.isColimitOfHasCokernelOfPreservesColimit instance [PreservesColimit (parallelPair f 0) G] : HasCokernel (G.map f) where exists_colimit := ⟨⟨_, isColimitOfHasCokernelOfPreservesColimit G f⟩⟩ variable [HasCokernel (G.map f)] /-- If the cokernel comparison map for `G` at `f` is an isomorphism, then `G` preserves the cokernel of `f`. -/ def PreservesCokernel.ofIsoComparison [i : IsIso (cokernelComparison f G)] : PreservesColimit (parallelPair f 0) G := by apply preservesColimitOfPreservesColimitCocone (cokernelIsCokernel f) apply (isColimitMapCoconeCoforkEquiv' G (cokernel.condition f)).symm _ exact @IsColimit.ofPointIso _ _ _ _ _ _ _ (cokernelIsCokernel (G.map f)) i #align category_theory.limits.preserves_cokernel.of_iso_comparison CategoryTheory.Limits.PreservesCokernel.ofIsoComparison variable [PreservesColimit (parallelPair f 0) G] /-- If `G` preserves the cokernel of `f`, then the cokernel comparison map for `G` at `f` is an isomorphism. -/ def PreservesCokernel.iso : G.obj (cokernel f) ≅ cokernel (G.map f) := IsColimit.coconePointUniqueUpToIso (isColimitOfHasCokernelOfPreservesColimit G f) (colimit.isColimit _) #align category_theory.limits.preserves_cokernel.iso CategoryTheory.Limits.PreservesCokernel.iso @[simp] theorem PreservesCokernel.iso_inv : (PreservesCokernel.iso G f).inv = cokernelComparison f G := by rw [← cancel_epi (cokernel.π _)] simp [PreservesCokernel.iso] #align category_theory.limits.preserves_cokernel.iso_inv CategoryTheory.Limits.PreservesCokernel.iso_inv instance : IsIso (cokernelComparison f G) := by rw [← PreservesCokernel.iso_inv] infer_instance @[reassoc] theorem preserves_cokernel_iso_comp_cokernel_map {X' Y' : C} (g : X' ⟶ Y') [HasCokernel g] [HasCokernel (G.map g)] [PreservesColimit (parallelPair g 0) G] (p : X ⟶ X') (q : Y ⟶ Y') (hpq : f ≫ q = p ≫ g) : (PreservesCokernel.iso G _).hom ≫ cokernel.map (G.map f) (G.map g) (G.map p) (G.map q) (by rw [← G.map_comp, hpq, G.map_comp]) = G.map (cokernel.map f g p q hpq) ≫ (PreservesCokernel.iso G _).hom := by rw [← Iso.comp_inv_eq, Category.assoc, ← Iso.eq_inv_comp, PreservesCokernel.iso_inv, cokernel_map_comp_cokernelComparison, PreservesCokernel.iso_inv] #align category_theory.limits.preserves_cokernel_iso_comp_cokernel_map CategoryTheory.Limits.preserves_cokernel_iso_comp_cokernel_map end Cokernels variable (X Y : C) (G : C ⥤ D) [Functor.PreservesZeroMorphisms G] noncomputable instance preservesKernelZero : PreservesLimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := KernelFork.IsLimit.isIso_ι c hc rfl refine' (KernelFork.isLimitMapConeEquiv c G).symm _ refine' IsLimit.ofIsoLimit (KernelFork.IsLimit.ofId _ (G.map_zero _ _)) _ exact (Fork.ext (G.mapIso (asIso (Fork.ι c))).symm (by simp)) noncomputable instance preservesCokernelZero : PreservesColimit (parallelPair (0 : X ⟶ Y) 0) G where preserves {c} hc := by have := CokernelCofork.IsColimit.isIso_π c hc rfl refine' (CokernelCofork.isColimitMapCoconeEquiv c G).symm _ refine' IsColimit.ofIsoColimit (CokernelCofork.IsColimit.ofId _ (G.map_zero _ _)) _ exact (Cofork.ext (G.mapIso (asIso (Cofork.π c))) (by simp)) variable {X Y} /-- The kernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesKernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesLimit (parallelPair f 0) G := by rw [hf] infer_instance /-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G := by rw [hf]
infer_instance
/-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G := by rw [hf]
Mathlib.CategoryTheory.Limits.Preserves.Shapes.Kernels.317_0.Ox2DGCW1z12SA2j
/-- The cokernel of a zero map is preserved by any functor which preserves zero morphisms. -/ noncomputable def preservesCokernelZero' (f : X ⟶ Y) (hf : f = 0) : PreservesColimit (parallelPair f 0) G
Mathlib_CategoryTheory_Limits_Preserves_Shapes_Kernels
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α α' : Sort u β : α → Sort v β' : α' → Sort v f : (a : α) → β a f' : (a : α') → β' a hα : α = α' h : ∀ (a : α) (a' : α'), HEq a a' → HEq (f a) (f' a') ⊢ HEq f f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by
subst hα
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') ⊢ HEq f f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα
have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a)
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) ⊢ HEq f f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a)
have : β = β' := by funext a exact type_eq_of_heq (this a)
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a)
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) ⊢ β = β'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by
funext a
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
case h α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) a : α ⊢ β a = β' a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a
exact type_eq_of_heq (this a)
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f : (a : α) → β a β' : α → Sort v f' : (a : α) → β' a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this✝ : ∀ (a : α), HEq (f a) (f' a) this : β = β' ⊢ HEq f f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a)
subst this
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a)
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f f' : (a : α) → β a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) ⊢ HEq f f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this
apply heq_of_eq
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
case h α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f f' : (a : α) → β a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) ⊢ f = f'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq
funext a
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
case h.h α✝ : Sort ?u.774 β✝ : Sort ?u.777 γ : Sort ?u.780 f✝ : α✝ → β✝ α : Sort u β : α → Sort v f f' : (a : α) → β a h : ∀ (a a' : α), HEq a a' → HEq (f a) (f' a') this : ∀ (a : α), HEq (f a) (f' a) a : α ⊢ f a = f' a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a
exact eq_of_heq (this a)
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a
Mathlib.Logic.Function.Basic.70_0.QX1TCPxnrBJfF8i
lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f'
Mathlib_Logic_Function_Basic
α : Type u_1 β : Type u_2 γ : Sort ?u.1351 f : α → β inst✝³ : BEq α inst✝² : LawfulBEq α inst✝¹ : BEq β inst✝ : LawfulBEq β I : Injective f a b : α ⊢ (f a == f b) = (a == b)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by
by_cases h : a == b
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by
Mathlib.Logic.Function.Basic.99_0.QX1TCPxnrBJfF8i
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b)
Mathlib_Logic_Function_Basic
case pos α : Type u_1 β : Type u_2 γ : Sort ?u.1351 f : α → β inst✝³ : BEq α inst✝² : LawfulBEq α inst✝¹ : BEq β inst✝ : LawfulBEq β I : Injective f a b : α h : (a == b) = true ⊢ (f a == f b) = (a == b)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;>
simp [h]
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;>
Mathlib.Logic.Function.Basic.99_0.QX1TCPxnrBJfF8i
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b)
Mathlib_Logic_Function_Basic
case neg α : Type u_1 β : Type u_2 γ : Sort ?u.1351 f : α → β inst✝³ : BEq α inst✝² : LawfulBEq α inst✝¹ : BEq β inst✝ : LawfulBEq β I : Injective f a b : α h : ¬(a == b) = true ⊢ (f a == f b) = (a == b)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;>
simp [h]
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;>
Mathlib.Logic.Function.Basic.99_0.QX1TCPxnrBJfF8i
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b)
Mathlib_Logic_Function_Basic
case pos α : Type u_1 β : Type u_2 γ : Sort ?u.1351 f : α → β inst✝³ : BEq α inst✝² : LawfulBEq α inst✝¹ : BEq β inst✝ : LawfulBEq β I : Injective f a b : α h : (a == b) = true ⊢ f a = f b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;>
simpa [I.eq_iff] using h
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;>
Mathlib.Logic.Function.Basic.99_0.QX1TCPxnrBJfF8i
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b)
Mathlib_Logic_Function_Basic
case neg α : Type u_1 β : Type u_2 γ : Sort ?u.1351 f : α → β inst✝³ : BEq α inst✝² : LawfulBEq α inst✝¹ : BEq β inst✝ : LawfulBEq β I : Injective f a b : α h : ¬(a == b) = true ⊢ ¬f a = f b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;>
simpa [I.eq_iff] using h
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;>
Mathlib.Logic.Function.Basic.99_0.QX1TCPxnrBJfF8i
theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b)
Mathlib_Logic_Function_Basic
α : Sort u_3 β : Sort u_2 γ : Sort u_1 f : α → β g : γ → α I : Injective (f ∘ g) hg : Surjective g x y : α h : f x = f y ⊢ x = y
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by
obtain ⟨x, rfl⟩ := hg x
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by
Mathlib.Logic.Function.Basic.135_0.QX1TCPxnrBJfF8i
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f
Mathlib_Logic_Function_Basic
case intro α : Sort u_3 β : Sort u_2 γ : Sort u_1 f : α → β g : γ → α I : Injective (f ∘ g) hg : Surjective g y : α x : γ h : f (g x) = f y ⊢ g x = y
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x
obtain ⟨y, rfl⟩ := hg y
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x
Mathlib.Logic.Function.Basic.135_0.QX1TCPxnrBJfF8i
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f
Mathlib_Logic_Function_Basic
case intro.intro α : Sort u_3 β : Sort u_2 γ : Sort u_1 f : α → β g : γ → α I : Injective (f ∘ g) hg : Surjective g x y : γ h : f (g x) = f (g y) ⊢ g x = g y
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y
exact congr_arg g (I h)
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y
Mathlib.Logic.Function.Basic.135_0.QX1TCPxnrBJfF8i
theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } ⊢ Injective fun x => if h : p x then f { val := x, property := h } else f' { val := x, property := h }
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by
intros x₁ x₂ h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (fun x => if h : p x then f { val := x, property := h } else f' { val := x, property := h }) x₁ = (fun x => if h : p x then f { val := x, property := h } else f' { val := x, property := h }) x₂ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h
dsimp only at h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h
by_cases h₁ : p x₁
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case pos α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : p x₁ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;>
by_cases h₂ : p x₂
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;>
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case neg α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : ¬p x₁ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;>
by_cases h₂ : p x₂
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;>
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case pos α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : p x₁ h₂ : p x₂ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ ·
rw [dif_pos h₁, dif_pos h₂] at h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ ·
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case pos α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h₁ : p x₁ h₂ : p x₂ h : f { val := x₁, property := h₁ } = f { val := x₂, property := h₂ } ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h;
injection (hf h)
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h;
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case neg α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : p x₁ h₂ : ¬p x₂ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) ·
rw [dif_pos h₁, dif_neg h₂] at h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) ·
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case neg α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h₁ : p x₁ h₂ : ¬p x₂ h : f { val := x₁, property := h₁ } = f' { val := x₂, property := h₂ } ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h;
exact (im_disj h).elim
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h;
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case pos α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : ¬p x₁ h₂ : p x₂ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim ·
rw [dif_neg h₁, dif_pos h₂] at h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim ·
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case pos α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h₁ : ¬p x₁ h₂ : p x₂ h : f' { val := x₁, property := h₁ } = f { val := x₂, property := h₂ } ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h;
exact (im_disj h.symm).elim
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h;
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case neg α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h : (if h : p x₁ then f { val := x₁, property := h } else f' { val := x₁, property := h }) = if h : p x₂ then f { val := x₂, property := h } else f' { val := x₂, property := h } h₁ : ¬p x₁ h₂ : ¬p x₂ ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim ·
rw [dif_neg h₁, dif_neg h₂] at h
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim ·
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
case neg α : Sort u_1 β : Sort u_2 γ : Sort ?u.3760 f✝ : α → β p : α → Prop inst✝ : DecidablePred p f : { a // p a } → β f' : { a // ¬p a } → β hf : Injective f hf' : Injective f' im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬p x'}, f { val := x, property := hx } ≠ f' { val := x', property := hx' } x₁ x₂ : α h₁ : ¬p x₁ h₂ : ¬p x₂ h : f' { val := x₁, property := h₁ } = f' { val := x₂, property := h₂ } ⊢ x₁ = x₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h;
injection (hf' h)
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h;
Mathlib.Logic.Function.Basic.161_0.QX1TCPxnrBJfF8i
lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.6972 f : α → β h : ∀ (g₁ g₂ : β → Prop), g₁ ∘ f = g₂ ∘ f → g₁ = g₂ ⊢ Surjective f
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by
specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩)
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by
Mathlib.Logic.Function.Basic.247_0.QX1TCPxnrBJfF8i
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.6972 f : α → β h : (fun y => ∃ x, f x = y) = fun x => True ⊢ Surjective f
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩)
intro y
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩)
Mathlib.Logic.Function.Basic.247_0.QX1TCPxnrBJfF8i
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.6972 f : α → β h : (fun y => ∃ x, f x = y) = fun x => True y : β ⊢ ∃ a, f a = y
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y;
rw [congr_fun h y]
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y;
Mathlib.Logic.Function.Basic.247_0.QX1TCPxnrBJfF8i
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.6972 f : α → β h : (fun y => ∃ x, f x = y) = fun x => True y : β ⊢ True
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y];
trivial
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y];
Mathlib.Logic.Function.Basic.247_0.QX1TCPxnrBJfF8i
theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.7498 f✝ f : α → β hf : Bijective f p : β → Prop x✝ : ∃! y, p y y : β hpy : (fun y => p y) y hy : ∀ (y_1 : β), (fun y => p y) y_1 → y_1 = y x : α hx : f x = y ⊢ (fun x => p (f x)) x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by
simpa [hx]
theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by
Mathlib.Logic.Function.Basic.266_0.QX1TCPxnrBJfF8i
theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.7498 f✝ f : α → β hf : Bijective f p : β → Prop x✝ : ∃! x, p (f x) x : α hpx : (fun x => p (f x)) x hx : ∀ (y : α), (fun x => p (f x)) y → y = x y : β hy : (fun y => p y) y z : α hz : f z = y ⊢ (fun x => p (f x)) z
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by
simpa [hz]
theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by
Mathlib.Logic.Function.Basic.266_0.QX1TCPxnrBJfF8i
theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x)
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) ⊢ ¬Surjective f
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by
intro hf
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf
let T : Type max u v := Sigma f
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f
cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f x✝ : ∃ a, f a = Set T ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f
cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
case intro α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with
| intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
case intro α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU =>
let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU =>
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
case intro α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩
have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } ⊢ Injective g
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by
intro s t h
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } s t : Set T h : g s = g t ⊢ s = t
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h
suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } s t : Set T h : g s = g t this : cast hU (g s).snd = cast hU (g t).snd ⊢ s = t
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by
simp only [cast_cast, cast_eq] at this
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } s t : Set T h : g s = g t this : s = t ⊢ s = t
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this
assumption
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } s t : Set T h : g s = g t ⊢ cast hU (g s).snd = cast hU (g t).snd
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption ·
congr
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption ·
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic