state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case intro α✝ : Sort ?u.9034 β : Sort ?u.9037 γ : Sort ?u.9040 f✝ : α✝ → β α : Type u f : α → Type (max u v) hf : Surjective f T : Type (max u v) := Sigma f U : α hU : f U = Set T g : Set T → T := fun s => { fst := U, snd := cast (_ : Set T = f U) s } hg : Injective g ⊢ False
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr
exact cantor_injective g hg
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr
Mathlib.Logic.Function.Basic.301_0.QX1TCPxnrBJfF8i
/-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f
Mathlib_Logic_Function_Basic
α : Sort u_2 β : Sort u_1 γ : Sort u_3 f✝ f : α → β g : β → α h : β → γ i : γ → β hf : LeftInverse f g hh : LeftInverse h i a : γ ⊢ h (f (g (i a))) = a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by
rw [hf (i a), hh a]
theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by
Mathlib.Logic.Function.Basic.354_0.QX1TCPxnrBJfF8i
theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.11583 f✝ f : α → β g₁ g₂ : β → α h₁ : LeftInverse g₁ f h₂ : RightInverse g₂ f ⊢ g₁ = g₁ ∘ f ∘ g₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by
rw [h₂.comp_eq_id, comp.right_id]
theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by
Mathlib.Logic.Function.Basic.400_0.QX1TCPxnrBJfF8i
theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort ?u.11583 f✝ f : α → β g₁ g₂ : β → α h₁ : LeftInverse g₁ f h₂ : RightInverse g₂ f ⊢ g₁ ∘ f ∘ g₂ = g₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by
rw [← comp.assoc, h₁.comp_eq_id, comp.left_id]
theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by
Mathlib.Logic.Function.Basic.400_0.QX1TCPxnrBJfF8i
theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f a : α b : β h : partialInv f b = some a hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ∃ a, f a = b ⊢ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by
rw [hpi, dif_pos h'] at h
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f a : α b : β hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ∃ a, f a = b h : some (Classical.choose h') = some a ⊢ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h
injection h with h
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f a : α b : β hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ∃ a, f a = b h : Classical.choose h' = a ⊢ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h
subst h
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f b : β hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ∃ a, f a = b ⊢ f (Classical.choose h') = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h
apply Classical.choose_spec h'
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f a : α b : β h : partialInv f b = some a hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ¬∃ a, f a = b ⊢ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by
rw [hpi, dif_neg h'] at h
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α✝ : Sort ?u.12049 β✝ : Sort ?u.12052 γ : Sort ?u.12055 f✝ : α✝ → β✝ α : Type u_1 β : Sort u_2 f : α → β I : Injective f a : α b : β h : none = some a hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none h' : ¬∃ a, f a = b ⊢ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h;
contradiction
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h;
Mathlib.Logic.Function.Basic.415_0.QX1TCPxnrBJfF8i
theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 inst✝ : Nonempty α f : α → β a : α b : β h : ∃ a, f a = b ⊢ f (invFun f b) = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by
simp only [invFun, dif_pos h, h.choose_spec]
theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by
Mathlib.Logic.Function.Basic.449_0.QX1TCPxnrBJfF8i
theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 inst✝ : Nonempty α f : α → β a : α b✝ : β g : β → α hf : Injective f hg : RightInverse g f b : β ⊢ f (invFun f b) = f (g b)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by
rw [hg b]
theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by
Mathlib.Logic.Function.Basic.461_0.QX1TCPxnrBJfF8i
theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 inst✝ : Nonempty α f : α → β a : α b✝ : β g : β → α hf : Injective f hg : RightInverse g f b : β ⊢ f (invFun f b) = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b]
exact invFun_eq ⟨g b, hg b⟩
theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b]
Mathlib.Logic.Function.Basic.461_0.QX1TCPxnrBJfF8i
theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g
Mathlib_Logic_Function_Basic
α : Sort u β✝ : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β✝ a a✝ : α b✝ : β✝ a✝ β : Sort u_1 f : α → β a' : α b : β a : α ⊢ update f a' b a = if a = a' then b else f a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by
rcases Decidable.eq_or_ne a a' with rfl | hne
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by
Mathlib.Logic.Function.Basic.575_0.QX1TCPxnrBJfF8i
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a
Mathlib_Logic_Function_Basic
case inl α : Sort u β✝ : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β✝ a a✝ : α b✝ : β✝ a✝ β : Sort u_1 f : α → β b : β a : α ⊢ update f a b a = if a = a then b else f a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;>
simp [*]
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;>
Mathlib.Logic.Function.Basic.575_0.QX1TCPxnrBJfF8i
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a
Mathlib_Logic_Function_Basic
case inr α : Sort u β✝ : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β✝ a a✝ : α b✝ : β✝ a✝ β : Sort u_1 f : α → β a' : α b : β a : α hne : a ≠ a' ⊢ update f a' b a = if a = a' then b else f a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;>
simp [*]
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;>
Mathlib.Logic.Function.Basic.575_0.QX1TCPxnrBJfF8i
/-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a : α b : β a f : (a : α) → β a a' : α v v' : β a' h : update f a' v = update f a' v' ⊢ v = v'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by
have := congr_fun h a'
theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by
Mathlib.Logic.Function.Basic.592_0.QX1TCPxnrBJfF8i
theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a')
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a : α b : β a f : (a : α) → β a a' : α v v' : β a' h : update f a' v = update f a' v' this : update f a' v a' = update f a' v' a' ⊢ v = v'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a'
rwa [update_same, update_same] at this
theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a'
Mathlib.Logic.Function.Basic.592_0.QX1TCPxnrBJfF8i
theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a')
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a✝ : α b✝ : β a✝ f : (a : α) → β a a : α b : β a p : (a : α) → β a → Prop ⊢ (∀ (x : α), p x (update f a b x)) ↔ p a b ∧ ∀ (x : α), x ≠ a → p x (f x)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by
rw [← and_forall_ne a, update_same]
lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by
Mathlib.Logic.Function.Basic.597_0.QX1TCPxnrBJfF8i
lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x)
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a✝ : α b✝ : β a✝ f : (a : α) → β a a : α b : β a p : (a : α) → β a → Prop ⊢ (p a b ∧ ∀ (b_1 : α), b_1 ≠ a → p b_1 (update f a b b_1)) ↔ p a b ∧ ∀ (x : α), x ≠ a → p x (f x)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same]
simp (config := { contextual := true })
lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same]
Mathlib.Logic.Function.Basic.597_0.QX1TCPxnrBJfF8i
lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x)
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a✝ : α b✝ : β a✝ f : (a : α) → β a a : α b : β a p : (a : α) → β a → Prop ⊢ (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ x x_1, p x (f x)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by
rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b]
theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by
Mathlib.Logic.Function.Basic.603_0.QX1TCPxnrBJfF8i
theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x)
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a✝ : α b✝ : β a✝ f : (a : α) → β a a : α b : β a p : (a : α) → β a → Prop ⊢ ¬(¬p a b ∧ ∀ (x : α), x ≠ a → ¬p x (f x)) ↔ p a b ∨ ∃ x x_1, p x (f x)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b]
simp [-not_and, not_and_or]
theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b]
Mathlib.Logic.Function.Basic.603_0.QX1TCPxnrBJfF8i
theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x)
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f g : (a : α) → β a a : α b : β a ⊢ update f a b = f ↔ b = f a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by
simp [update_eq_iff]
@[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by
Mathlib.Logic.Function.Basic.619_0.QX1TCPxnrBJfF8i
@[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f g : (a : α) → β a a : α b : β a ⊢ f = update f a b ↔ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by
simp [eq_update_iff]
@[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by
Mathlib.Logic.Function.Basic.622_0.QX1TCPxnrBJfF8i
@[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b
Mathlib_Logic_Function_Basic
α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 f : (i : ι) → α i → β i g : (i : ι) → α i i : ι v : α i j : ι ⊢ f j (update g i v j) = update (fun k => f k (g k)) i (f i v) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by
by_cases h:j = i
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by
Mathlib.Logic.Function.Basic.659_0.QX1TCPxnrBJfF8i
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 f : (i : ι) → α i → β i g : (i : ι) → α i i : ι v : α i j : ι h : j = i ⊢ f j (update g i v j) = update (fun k => f k (g k)) i (f i v) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i ·
subst j
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i ·
Mathlib.Logic.Function.Basic.659_0.QX1TCPxnrBJfF8i
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 f : (i : ι) → α i → β i g : (i : ι) → α i i : ι v : α i ⊢ f i (update g i v i) = update (fun k => f k (g k)) i (f i v) i
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j
simp
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j
Mathlib.Logic.Function.Basic.659_0.QX1TCPxnrBJfF8i
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 f : (i : ι) → α i → β i g : (i : ι) → α i i : ι v : α i j : ι h : ¬j = i ⊢ f j (update g i v j) = update (fun k => f k (g k)) i (f i v) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp ·
simp [h]
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp ·
Mathlib.Logic.Function.Basic.659_0.QX1TCPxnrBJfF8i
theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j
Mathlib_Logic_Function_Basic
α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 γ : ι → Sort u_4 f : (i : ι) → α i → β i → γ i g : (i : ι) → α i h : (i : ι) → β i i : ι v : α i w : β i j : ι ⊢ f j (update g i v j) (update h i w j) = update (fun k => f k (g k) (h k)) i (f i v w) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by
by_cases h:j = i
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by
Mathlib.Logic.Function.Basic.668_0.QX1TCPxnrBJfF8i
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 γ : ι → Sort u_4 f : (i : ι) → α i → β i → γ i g : (i : ι) → α i h✝ : (i : ι) → β i i : ι v : α i w : β i j : ι h : j = i ⊢ f j (update g i v j) (update h✝ i w j) = update (fun k => f k (g k) (h✝ k)) i (f i v w) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i ·
subst j
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i ·
Mathlib.Logic.Function.Basic.668_0.QX1TCPxnrBJfF8i
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 γ : ι → Sort u_4 f : (i : ι) → α i → β i → γ i g : (i : ι) → α i h : (i : ι) → β i i : ι v : α i w : β i ⊢ f i (update g i v i) (update h i w i) = update (fun k => f k (g k) (h k)) i (f i v w) i
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j
simp
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j
Mathlib.Logic.Function.Basic.668_0.QX1TCPxnrBJfF8i
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g✝ : (a : α✝) → β✝ a a : α✝ b : β✝ a ι : Sort u_1 inst✝ : DecidableEq ι α : ι → Sort u_2 β : ι → Sort u_3 γ : ι → Sort u_4 f : (i : ι) → α i → β i → γ i g : (i : ι) → α i h✝ : (i : ι) → β i i : ι v : α i w : β i j : ι h : ¬j = i ⊢ f j (update g i v j) (update h✝ i w j) = update (fun k => f k (g k) (h✝ k)) i (f i v w) j
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp ·
simp [h]
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp ·
Mathlib.Logic.Function.Basic.668_0.QX1TCPxnrBJfF8i
theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j
Mathlib_Logic_Function_Basic
α : Sort u β : α → Sort v α' : Sort w inst✝¹ : DecidableEq α inst✝ : DecidableEq α' f✝ g : (a : α) → β a a✝ : α b : β a✝ P : ⦃a : α⦄ → β a → Prop f : (a : α) → β a a' : α v : β a' a : α ⊢ P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by
rw [apply_update P, update_apply, ite_prop_iff_or]
theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by
Mathlib.Logic.Function.Basic.677_0.QX1TCPxnrBJfF8i
theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a)
Mathlib_Logic_Function_Basic
α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a ⊢ update (update f a v) b w = update (update f b w) a v
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by
funext c
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case h α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α ⊢ update (update f a v) b w c = update (update f b w) a v c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c
simp only [update]
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case h α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update]
by_cases h₁ : c = b
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update]
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : c = b ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;>
by_cases h₂ : c = a
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;>
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : ¬c = b ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;>
by_cases h₂ : c = a
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;>
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : c = b h₂ : c = a ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a ·
rw [dif_pos h₁, dif_pos h₂]
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a ·
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : c = b h₂ : c = a ⊢ (_ : b = c) ▸ w = (_ : a = c) ▸ v
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂]
cases h (h₂.symm.trans h₁)
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂]
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : c = b h₂ : ¬c = a ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) ·
rw [dif_pos h₁, dif_pos h₁, dif_neg h₂]
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) ·
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : ¬c = b h₂ : c = a ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] ·
rw [dif_neg h₁, dif_neg h₁, dif_pos h₂]
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] ·
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a b : α h : a ≠ b v : β a w : β b f : (a : α) → β a c : α h₁ : ¬c = b h₂ : ¬c = a ⊢ (if h : c = b then (_ : b = c) ▸ w else if h : c = a then (_ : a = c) ▸ v else f c) = if h : c = a then (_ : a = c) ▸ v else if h : c = b then (_ : b = c) ▸ w else f c
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] ·
rw [dif_neg h₁, dif_neg h₁, dif_neg h₂]
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] ·
Mathlib.Logic.Function.Basic.686_0.QX1TCPxnrBJfF8i
theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v
Mathlib_Logic_Function_Basic
α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a : α v w : β a f : (a : α) → β a ⊢ update (update f a v) a w = update f a w
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by
funext b
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by
Mathlib.Logic.Function.Basic.698_0.QX1TCPxnrBJfF8i
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w
Mathlib_Logic_Function_Basic
case h α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a : α v w : β a f : (a : α) → β a b : α ⊢ update (update f a v) a w b = update f a w b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b
by_cases h : b = a
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b
Mathlib.Logic.Function.Basic.698_0.QX1TCPxnrBJfF8i
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w
Mathlib_Logic_Function_Basic
case pos α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a : α v w : β a f : (a : α) → β a b : α h : b = a ⊢ update (update f a v) a w b = update f a w b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;>
simp [update, h]
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;>
Mathlib.Logic.Function.Basic.698_0.QX1TCPxnrBJfF8i
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w
Mathlib_Logic_Function_Basic
case neg α✝ : Sort u β✝ : α✝ → Sort v α' : Sort w inst✝² : DecidableEq α✝ inst✝¹ : DecidableEq α' f✝ g : (a : α✝) → β✝ a a✝ : α✝ b✝ : β✝ a✝ α : Sort u_2 inst✝ : DecidableEq α β : α → Sort u_1 a : α v w : β a f : (a : α) → β a b : α h : ¬b = a ⊢ update (update f a v) a w b = update f a w b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;>
simp [update, h]
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;>
Mathlib.Logic.Function.Basic.698_0.QX1TCPxnrBJfF8i
@[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f✝ f : α → β g : α → γ e' : β → γ b : β inst✝ : Decidable (∃ a, f a = b) ⊢ extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by
unfold extend
theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by
Mathlib.Logic.Function.Basic.734_0.QX1TCPxnrBJfF8i
theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f✝ f : α → β g : α → γ e' : β → γ b : β inst✝ : Decidable (∃ a, f a = b) ⊢ (if h : ∃ a, f a = b then g (Classical.choose h) else e' b) = if h : ∃ a, f a = b then g (Classical.choose h) else e' b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend
congr
theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend
Mathlib.Logic.Function.Basic.734_0.QX1TCPxnrBJfF8i
theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ hf : FactorsThrough g f e' : β → γ a : α ⊢ extend f g e' (f a) = g a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by
simp only [extend_def, dif_pos, exists_apply_eq_apply]
lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by
Mathlib.Logic.Function.Basic.744_0.QX1TCPxnrBJfF8i
lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ hf : FactorsThrough g f e' : β → γ a : α ⊢ g (Classical.choose (_ : ∃ a_1, f a_1 = f a)) = g a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply]
exact hf (Classical.choose_spec (exists_apply_eq_apply f a))
lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply]
Mathlib.Logic.Function.Basic.744_0.QX1TCPxnrBJfF8i
lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ e' : β → γ b : β hb : ¬∃ a, f a = b ⊢ extend f g e' b = e' b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by
simp [Function.extend_def, hb]
@[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by
Mathlib.Logic.Function.Basic.756_0.QX1TCPxnrBJfF8i
@[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ inst✝ : Nonempty γ hf : FactorsThrough g f x : α ⊢ g x = (extend f g (const β (Classical.arbitrary γ)) ∘ f) x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by
simp only [comp_apply, hf.extend_apply]
lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by
Mathlib.Logic.Function.Basic.762_0.QX1TCPxnrBJfF8i
lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β g : α → γ inst✝ : Nonempty γ h : ∃ e, g = e ∘ f x✝¹ x✝ : α hf : f x✝¹ = f x✝ ⊢ g x✝¹ = g x✝
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by
rw [Classical.choose_spec h, comp_apply, comp_apply, hf]
lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by
Mathlib.Logic.Function.Basic.762_0.QX1TCPxnrBJfF8i
lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Injective f e' : β → γ ⊢ Injective fun g => extend f g e'
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by
intro g₁ g₂ hg
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by
Mathlib.Logic.Function.Basic.774_0.QX1TCPxnrBJfF8i
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e'
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Injective f e' : β → γ g₁ g₂ : α → γ hg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂ ⊢ g₁ = g₂
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg
refine' funext fun x ↦ _
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg
Mathlib.Logic.Function.Basic.774_0.QX1TCPxnrBJfF8i
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e'
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Injective f e' : β → γ g₁ g₂ : α → γ hg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂ x : α ⊢ g₁ x = g₂ x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _
have H := congr_fun hg (f x)
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _
Mathlib.Logic.Function.Basic.774_0.QX1TCPxnrBJfF8i
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e'
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Injective f e' : β → γ g₁ g₂ : α → γ hg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂ x : α H : (fun g => extend f g e') g₁ (f x) = (fun g => extend f g e') g₂ (f x) ⊢ g₁ x = g₂ x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x)
simp only [hf.extend_apply] at H
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x)
Mathlib.Logic.Function.Basic.774_0.QX1TCPxnrBJfF8i
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e'
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Injective f e' : β → γ g₁ g₂ : α → γ hg : (fun g => extend f g e') g₁ = (fun g => extend f g e') g₂ x : α H : g₁ x = g₂ x ⊢ g₁ x = g₂ x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H
exact H
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H
Mathlib.Logic.Function.Basic.774_0.QX1TCPxnrBJfF8i
theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e'
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : Sort u_3 f : α → β hf : Bijective f g : α → γ ⊢ (fun g => g ∘ f) (g ∘ surjInv (_ : Surjective f)) = g
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by
simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]
theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by
Mathlib.Logic.Function.Basic.802_0.QX1TCPxnrBJfF8i
theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f
Mathlib_Logic_Function_Basic
α : Sort u f : α → α h : Involutive f P : Prop inst✝ : Decidable P x : α ⊢ f (if P then x else f x) = if ¬P then x else f x
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by
rw [apply_ite f, h, ite_not]
/-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by
Mathlib.Logic.Function.Basic.909_0.QX1TCPxnrBJfF8i
/-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x)
Mathlib_Logic_Function_Basic
α : Sort u_1 f : α → α ⊢ (Symmetric fun x x_1 => f x = x_1) ↔ Involutive f
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by
simp [Symmetric, Involutive]
@[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by
Mathlib.Logic.Function.Basic.921_0.QX1TCPxnrBJfF8i
@[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f
Mathlib_Logic_Function_Basic
p : Prop α : Sort u_1 inst✝ : Nonempty α P : α → Prop f : p → α a : p h : P (f a) ⊢ P (sometimes f)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by
rwa [sometimes_eq]
theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by
Mathlib.Logic.Function.Basic.985_0.QX1TCPxnrBJfF8i
theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 r : α → β → Prop ⊢ (∀ (a : α), ∃! b, r a b) ↔ ∃ f, ∀ {a : α} {b : β}, r a b ↔ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by
refine ⟨fun h ↦ ?_, ?_⟩
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by
Mathlib.Logic.Function.Basic.994_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
case refine_1 α : Sort u_1 β : Sort u_2 r : α → β → Prop h : ∀ (a : α), ∃! b, r a b ⊢ ∃ f, ∀ {a : α} {b : β}, r a b ↔ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ ·
refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ ·
Mathlib.Logic.Function.Basic.994_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
case refine_1.refine_1 α : Sort u_1 β : Sort u_2 r : α → β → Prop h : ∀ (a : α), ∃! b, r a b a✝ : α b✝ : β hr : r a✝ b✝ ⊢ (fun a => Exists.choose (_ : ∃! b, r a b)) a✝ = b✝ case refine_1.refine_2 α : Sort u_1 β : Sort u_2 r : α → β → Prop h : ∀ (a : α), ∃! b, r a b a✝ : α b✝ : β h' : (fun a => Exists.choose (_ : ∃! b, r a b)) a✝ = b✝ ⊢ r a✝ ((fun a => Exists.choose (_ : ∃! b, r a b)) a✝)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩
exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1]
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩
Mathlib.Logic.Function.Basic.994_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
case refine_2 α : Sort u_1 β : Sort u_2 r : α → β → Prop ⊢ (∃ f, ∀ {a : α} {b : β}, r a b ↔ f a = b) → ∀ (a : α), ∃! b, r a b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] ·
rintro ⟨f, hf⟩
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] ·
Mathlib.Logic.Function.Basic.994_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
case refine_2.intro α : Sort u_1 β : Sort u_2 r : α → β → Prop f : α → β hf : ∀ {a : α} {b : β}, r a b ↔ f a = b ⊢ ∀ (a : α), ∃! b, r a b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩
simp [hf]
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩
Mathlib.Logic.Function.Basic.994_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 r : α → β → Prop ⊢ (∀ (a : α), ∃! b, r a b) ↔ ∃ f, r = fun x x_1 => f x = x_1
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by
simp [forall_existsUnique_iff, Function.funext_iff]
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by
Mathlib.Logic.Function.Basic.1005_0.QX1TCPxnrBJfF8i
/-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·)
Mathlib_Logic_Function_Basic
α : Sort u_1 r : α → α → Prop hr : Symmetric r ⊢ (∀ (a : α), ∃! b, r a b) ↔ ∃ f, Involutive f ∧ r = fun x x_1 => f x = x_1
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by
refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by
Mathlib.Logic.Function.Basic.1012_0.QX1TCPxnrBJfF8i
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·)
Mathlib_Logic_Function_Basic
α : Sort u_1 r : α → α → Prop hr : Symmetric r h : ∀ (a : α), ∃! b, r a b ⊢ ∃ f, Involutive f ∧ r = fun x x_1 => f x = x_1
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩
rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩
Mathlib.Logic.Function.Basic.1012_0.QX1TCPxnrBJfF8i
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·)
Mathlib_Logic_Function_Basic
case intro α : Sort u_1 f : α → α hr : Symmetric fun x x_1 => f x = x_1 h : ∀ (a : α), ∃! b, (fun x x_1 => f x = x_1) a b ⊢ ∃ f_1, Involutive f_1 ∧ (fun x x_1 => f x = x_1) = fun x x_1 => f_1 x = x_1
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩
exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩
Mathlib.Logic.Function.Basic.1012_0.QX1TCPxnrBJfF8i
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·)
Mathlib_Logic_Function_Basic
α : Sort u_1 r : α → α → Prop hr : Symmetric r ⊢ (∀ (a : α), ∃! b, r a b) ↔ ∃ f, Involutive f ∧ ∀ {a b : α}, r a b ↔ f a = b
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by
simp [hr.forall_existsUnique_iff', funext_iff]
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by
Mathlib.Logic.Function.Basic.1021_0.QX1TCPxnrBJfF8i
/-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b
Mathlib_Logic_Function_Basic
α β : Sort u_1 h : α = β ⊢ Bijective (Eq.mp h)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly?
cases h
theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly?
Mathlib.Logic.Function.Basic.1042_0.QX1TCPxnrBJfF8i
theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h)
Mathlib_Logic_Function_Basic
case refl α : Sort u_1 ⊢ Bijective (Eq.mp (_ : α = α))
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h
refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩
theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h
Mathlib.Logic.Function.Basic.1042_0.QX1TCPxnrBJfF8i
theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h)
Mathlib_Logic_Function_Basic
α β : Sort u_1 h : α = β ⊢ Bijective (Eq.mpr h)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by
cases h
theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by
Mathlib.Logic.Function.Basic.1049_0.QX1TCPxnrBJfF8i
theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h)
Mathlib_Logic_Function_Basic
case refl α : Sort u_1 ⊢ Bijective (Eq.mpr (_ : α = α))
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h
refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩
theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h
Mathlib.Logic.Function.Basic.1049_0.QX1TCPxnrBJfF8i
theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h)
Mathlib_Logic_Function_Basic
α β : Sort u_1 h : α = β ⊢ Bijective (cast h)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mpr_bijective eq_mpr_bijective theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by
cases h
theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by
Mathlib.Logic.Function.Basic.1054_0.QX1TCPxnrBJfF8i
theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h)
Mathlib_Logic_Function_Basic
case refl α : Sort u_1 ⊢ Bijective (cast (_ : α = α))
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mpr_bijective eq_mpr_bijective theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by cases h
refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩
theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by cases h
Mathlib.Logic.Function.Basic.1054_0.QX1TCPxnrBJfF8i
theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h)
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : β → Sort v f : α → β g : β → α h : LeftInverse g f C : (a : α) → γ (f a) a : α ⊢ HEq (C (g (f a))) (C a)
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mpr_bijective eq_mpr_bijective theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align cast_bijective cast_bijective /-! Note these lemmas apply to `Type*` not `Sort*`, as the latter interferes with `simp`, and is trivial anyway.-/ @[simp] theorem eq_rec_inj {α : Sort*} {a a' : α} (h : a = a') {C : α → Type*} (x y : C a) : (Eq.ndrec x h : C a') = Eq.ndrec y h ↔ x = y := (eq_rec_on_bijective h).injective.eq_iff #align eq_rec_inj eq_rec_inj @[simp] theorem cast_inj {α β : Type u} (h : α = β) {x y : α} : cast h x = cast h y ↔ x = y := (cast_bijective h).injective.eq_iff #align cast_inj cast_inj theorem Function.LeftInverse.eq_rec_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : -- TODO: mathlib3 uses `(congr_arg f (h a)).rec (C (g (f a)))` for LHS @Eq.rec β (f (g (f a))) (fun x _ ↦ γ x) (C (g (f a))) (f a) (congr_arg f (h a)) = C a := eq_of_heq <| (eq_rec_heq _ _).trans <| by
rw [h]
theorem Function.LeftInverse.eq_rec_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : -- TODO: mathlib3 uses `(congr_arg f (h a)).rec (C (g (f a)))` for LHS @Eq.rec β (f (g (f a))) (fun x _ ↦ γ x) (C (g (f a))) (f a) (congr_arg f (h a)) = C a := eq_of_heq <| (eq_rec_heq _ _).trans <| by
Mathlib.Logic.Function.Basic.1074_0.QX1TCPxnrBJfF8i
theorem Function.LeftInverse.eq_rec_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : -- TODO: mathlib3 uses `(congr_arg f (h a)).rec (C (g (f a)))` for LHS @Eq.rec β (f (g (f a))) (fun x _ ↦ γ x) (C (g (f a))) (f a) (congr_arg f (h a)) = C a
Mathlib_Logic_Function_Basic
α : Sort u_1 β : Sort u_2 γ : β → Sort v f : α → β g : β → α h : LeftInverse g f C : (a : α) → γ (f a) a : α ⊢ cast (_ : γ (f (g (f a))) = γ (f a)) (C (g (f a))) = C a
/- Copyright (c) 2016 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import Mathlib.Logic.Nonempty import Mathlib.Init.Set #align_import logic.function.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1" /-! # Miscellaneous function constructions and lemmas -/ set_option autoImplicit true open Function universe u v w namespace Function section variable {α β γ : Sort _} {f : α → β} /-- Evaluate a function at an argument. Useful if you want to talk about the partially applied `Function.eval x : (∀ x, β x) → β x`. -/ @[reducible, simp] def eval {β : α → Sort*} (x : α) (f : ∀ x, β x) : β x := f x #align function.eval Function.eval theorem eval_apply {β : α → Sort*} (x : α) (f : ∀ x, β x) : eval x f = f x := rfl #align function.eval_apply Function.eval_apply theorem const_def {y : β} : (fun _ : α ↦ y) = const α y := rfl #align function.const_def Function.const_def @[simp] theorem const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl #align function.const_comp Function.const_comp @[simp] theorem comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl #align function.comp_const Function.comp_const theorem const_injective [Nonempty α] : Injective (const α : β → α → β) := fun y₁ y₂ h ↦ let ⟨x⟩ := ‹Nonempty α› congr_fun h x #align function.const_injective Function.const_injective @[simp] theorem const_inj [Nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := ⟨fun h ↦ const_injective h, fun h ↦ h ▸ rfl⟩ #align function.const_inj Function.const_inj theorem id_def : @id α = fun x ↦ x := rfl #align function.id_def Function.id_def -- porting note: `Function.onFun` is now reducible -- @[simp] theorem onFun_apply (f : β → β → γ) (g : α → β) (a b : α) : onFun f g a b = f (g a) (g b) := rfl #align function.on_fun_apply Function.onFun_apply lemma hfunext {α α' : Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : ∀a, β a} {f' : ∀a, β' a} (hα : α = α') (h : ∀a a', HEq a a' → HEq (f a) (f' a')) : HEq f f' := by subst hα have : ∀a, HEq (f a) (f' a) := λ a => h a a (HEq.refl a) have : β = β' := by funext a exact type_eq_of_heq (this a) subst this apply heq_of_eq funext a exact eq_of_heq (this a) #align function.hfunext Function.hfunext theorem funext_iff {β : α → Sort*} {f₁ f₂ : ∀ x : α, β x} : f₁ = f₂ ↔ ∀ a, f₁ a = f₂ a := Iff.intro (fun h _ ↦ h ▸ rfl) funext #align function.funext_iff Function.funext_iff theorem ne_iff {β : α → Sort*} {f₁ f₂ : ∀ a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := funext_iff.not.trans not_forall #align function.ne_iff Function.ne_iff protected theorem Bijective.injective {f : α → β} (hf : Bijective f) : Injective f := hf.1 #align function.bijective.injective Function.Bijective.injective protected theorem Bijective.surjective {f : α → β} (hf : Bijective f) : Surjective f := hf.2 #align function.bijective.surjective Function.Bijective.surjective theorem Injective.eq_iff (I : Injective f) {a b : α} : f a = f b ↔ a = b := ⟨@I _ _, congr_arg f⟩ #align function.injective.eq_iff Function.Injective.eq_iff theorem Injective.beq_eq [BEq α] [LawfulBEq α] [BEq β] [LawfulBEq β] (I : Injective f) {a b : α} : (f a == f b) = (a == b) := by by_cases h : a == b <;> simp [h] <;> simpa [I.eq_iff] using h theorem Injective.eq_iff' (I : Injective f) {a b : α} {c : β} (h : f b = c) : f a = c ↔ a = b := h ▸ I.eq_iff #align function.injective.eq_iff' Function.Injective.eq_iff' theorem Injective.ne (hf : Injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := mt fun h ↦ hf h #align function.injective.ne Function.Injective.ne theorem Injective.ne_iff (hf : Injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := ⟨mt <| congr_arg f, hf.ne⟩ #align function.injective.ne_iff Function.Injective.ne_iff theorem Injective.ne_iff' (hf : Injective f) {x y : α} {z : β} (h : f y = z) : f x ≠ z ↔ x ≠ y := h ▸ hf.ne_iff #align function.injective.ne_iff' Function.Injective.ne_iff' /-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then the domain `α` also has decidable equality. -/ protected def Injective.decidableEq [DecidableEq β] (I : Injective f) : DecidableEq α := fun _ _ ↦ decidable_of_iff _ I.eq_iff #align function.injective.decidable_eq Function.Injective.decidableEq theorem Injective.of_comp {g : γ → α} (I : Injective (f ∘ g)) : Injective g := fun _ _ h ↦ I <| congr_arg f h #align function.injective.of_comp Function.Injective.of_comp @[simp] theorem Injective.of_comp_iff (hf : Injective f) (g : γ → α) : Injective (f ∘ g) ↔ Injective g := ⟨Injective.of_comp, hf.comp⟩ #align function.injective.of_comp_iff Function.Injective.of_comp_iff theorem Injective.of_comp_right {g : γ → α} (I : Injective (f ∘ g)) (hg : Surjective g) : Injective f := fun x y h ↦ by obtain ⟨x, rfl⟩ := hg x obtain ⟨y, rfl⟩ := hg y exact congr_arg g (I h) theorem Surjective.bijective₂_of_injective {g : γ → α} (hf : Surjective f) (hg : Surjective g) (I : Injective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨I.of_comp_right hg, hf⟩, I.of_comp, hg⟩ @[simp] theorem Injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : Bijective g) : Injective (f ∘ g) ↔ Injective f := ⟨fun I ↦ I.of_comp_right hg.2, fun h ↦ h.comp hg.injective⟩ #align function.injective.of_comp_iff' Function.Injective.of_comp_iff' /-- Composition by an injective function on the left is itself injective. -/ theorem Injective.comp_left {g : β → γ} (hg : Function.Injective g) : Function.Injective (g ∘ · : (α → β) → α → γ) := fun _ _ hgf ↦ funext fun i ↦ hg <| (congr_fun hgf i : _) #align function.injective.comp_left Function.Injective.comp_left theorem injective_of_subsingleton [Subsingleton α] (f : α → β) : Injective f := fun _ _ _ ↦ Subsingleton.elim _ _ #align function.injective_of_subsingleton Function.injective_of_subsingleton lemma Injective.dite (p : α → Prop) [DecidablePred p] {f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} (hf : Injective f) (hf' : Injective f') (im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : Function.Injective (λ x => if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := by intros x₁ x₂ h dsimp only at h by_cases h₁ : p x₁ <;> by_cases h₂ : p x₂ · rw [dif_pos h₁, dif_pos h₂] at h; injection (hf h) · rw [dif_pos h₁, dif_neg h₂] at h; exact (im_disj h).elim · rw [dif_neg h₁, dif_pos h₂] at h; exact (im_disj h.symm).elim · rw [dif_neg h₁, dif_neg h₂] at h; injection (hf' h) #align function.injective.dite Function.Injective.dite theorem Surjective.of_comp {g : γ → α} (S : Surjective (f ∘ g)) : Surjective f := fun y ↦ let ⟨x, h⟩ := S y ⟨g x, h⟩ #align function.surjective.of_comp Function.Surjective.of_comp @[simp] theorem Surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : Surjective g) : Surjective (f ∘ g) ↔ Surjective f := ⟨Surjective.of_comp, fun h ↦ h.comp hg⟩ #align function.surjective.of_comp_iff Function.Surjective.of_comp_iff theorem Surjective.of_comp_left {g : γ → α} (S : Surjective (f ∘ g)) (hf : Injective f) : Surjective g := fun a ↦ let ⟨c, hc⟩ := S (f a); ⟨c, hf hc⟩ theorem Injective.bijective₂_of_surjective {g : γ → α} (hf : Injective f) (hg : Injective g) (S : Surjective (f ∘ g)) : Bijective f ∧ Bijective g := ⟨⟨hf, S.of_comp⟩, hg, S.of_comp_left hf⟩ @[simp] theorem Surjective.of_comp_iff' (hf : Bijective f) (g : γ → α) : Surjective (f ∘ g) ↔ Surjective g := ⟨fun S ↦ S.of_comp_left hf.1, hf.surjective.comp⟩ #align function.surjective.of_comp_iff' Function.Surjective.of_comp_iff' instance decidableEqPFun (p : Prop) [Decidable p] (α : p → Type*) [∀ hp, DecidableEq (α hp)] : DecidableEq (∀ hp, α hp) | f, g => decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm protected theorem Surjective.forall (hf : Surjective f) {p : β → Prop} : (∀ y, p y) ↔ ∀ x, p (f x) := ⟨fun h x ↦ h (f x), fun h y ↦ let ⟨x, hx⟩ := hf y hx ▸ h x⟩ #align function.surjective.forall Function.Surjective.forall protected theorem Surjective.forall₂ (hf : Surjective f) {p : β → β → Prop} : (∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall #align function.surjective.forall₂ Function.Surjective.forall₂ protected theorem Surjective.forall₃ (hf : Surjective f) {p : β → β → β → Prop} : (∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.forall.trans $ forall_congr' fun _ ↦ hf.forall₂ #align function.surjective.forall₃ Function.Surjective.forall₃ protected theorem Surjective.exists (hf : Surjective f) {p : β → Prop} : (∃ y, p y) ↔ ∃ x, p (f x) := ⟨fun ⟨y, hy⟩ ↦ let ⟨x, hx⟩ := hf y ⟨x, hx.symm ▸ hy⟩, fun ⟨x, hx⟩ ↦ ⟨f x, hx⟩⟩ #align function.surjective.exists Function.Surjective.exists protected theorem Surjective.exists₂ (hf : Surjective f) {p : β → β → Prop} : (∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists #align function.surjective.exists₂ Function.Surjective.exists₂ protected theorem Surjective.exists₃ (hf : Surjective f) {p : β → β → β → Prop} : (∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := hf.exists.trans <| exists_congr fun _ ↦ hf.exists₂ #align function.surjective.exists₃ Function.Surjective.exists₃ theorem Surjective.injective_comp_right (hf : Surjective f) : Injective fun g : β → γ ↦ g ∘ f := fun _ _ h ↦ funext <| hf.forall.2 <| congr_fun h #align function.surjective.injective_comp_right Function.Surjective.injective_comp_right protected theorem Surjective.right_cancellable (hf : Surjective f) {g₁ g₂ : β → γ} : g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := hf.injective_comp_right.eq_iff #align function.surjective.right_cancellable Function.Surjective.right_cancellable theorem surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : Surjective f := by specialize h (fun y ↦ ∃ x, f x = y) (fun _ ↦ True) (funext fun x ↦ eq_true ⟨_, rfl⟩) intro y; rw [congr_fun h y]; trivial #align function.surjective_of_right_cancellable_Prop Function.surjective_of_right_cancellable_Prop theorem bijective_iff_existsUnique (f : α → β) : Bijective f ↔ ∀ b : β, ∃! a : α, f a = b := ⟨fun hf b ↦ let ⟨a, ha⟩ := hf.surjective b ⟨a, ha, fun _ ha' ↦ hf.injective (ha'.trans ha.symm)⟩, fun he ↦ ⟨fun {_a a'} h ↦ (he (f a')).unique h rfl, fun b ↦ (he b).exists⟩⟩ #align function.bijective_iff_exists_unique Function.bijective_iff_existsUnique /-- Shorthand for using projection notation with `Function.bijective_iff_existsUnique`. -/ protected theorem Bijective.existsUnique {f : α → β} (hf : Bijective f) (b : β) : ∃! a : α, f a = b := (bijective_iff_existsUnique f).mp hf b #align function.bijective.exists_unique Function.Bijective.existsUnique theorem Bijective.existsUnique_iff {f : α → β} (hf : Bijective f) {p : β → Prop} : (∃! y, p y) ↔ ∃! x, p (f x) := ⟨fun ⟨y, hpy, hy⟩ ↦ let ⟨x, hx⟩ := hf.surjective y ⟨x, by simpa [hx], fun z (hz : p (f z)) ↦ hf.injective <| hx.symm ▸ hy _ hz⟩, fun ⟨x, hpx, hx⟩ ↦ ⟨f x, hpx, fun y hy ↦ let ⟨z, hz⟩ := hf.surjective y hz ▸ congr_arg f (hx _ (by simpa [hz]))⟩⟩ #align function.bijective.exists_unique_iff Function.Bijective.existsUnique_iff theorem Bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : Bijective g) : Bijective (f ∘ g) ↔ Bijective f := and_congr (Injective.of_comp_iff' _ hg) (Surjective.of_comp_iff _ hg.surjective) #align function.bijective.of_comp_iff Function.Bijective.of_comp_iff theorem Bijective.of_comp_iff' {f : α → β} (hf : Bijective f) (g : γ → α) : Function.Bijective (f ∘ g) ↔ Function.Bijective g := and_congr (Injective.of_comp_iff hf.injective _) (Surjective.of_comp_iff' hf _) #align function.bijective.of_comp_iff' Function.Bijective.of_comp_iff' /-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` to `Set α`. -/ theorem cantor_surjective {α} (f : α → Set α) : ¬Surjective f | h => let ⟨D, e⟩ := h {a | ¬ f a a} @iff_not_self (D ∈ f D) <| iff_of_eq <| congr_arg (D ∈ ·) e #align function.cantor_surjective Function.cantor_surjective /-- **Cantor's diagonal argument** implies that there are no injective functions from `Set α` to `α`. -/ theorem cantor_injective {α : Type*} (f : Set α → α) : ¬Injective f | i => cantor_surjective (fun a ↦ {b | ∀ U, a = f U → U b}) <| RightInverse.surjective (λ U => Set.ext <| fun _ ↦ ⟨fun h ↦ h U rfl, fun h _ e ↦ i e ▸ h⟩) #align function.cantor_injective Function.cantor_injective /-- There is no surjection from `α : Type u` into `Type (max u v)`. This theorem demonstrates why `Type : Type` would be inconsistent in Lean. -/ theorem not_surjective_Type {α : Type u} (f : α → Type max u v) : ¬Surjective f := by intro hf let T : Type max u v := Sigma f cases hf (Set T) with | intro U hU => let g : Set T → T := fun s ↦ ⟨U, cast hU.symm s⟩ have hg : Injective g := by intro s t h suffices cast hU (g s).2 = cast hU (g t).2 by simp only [cast_cast, cast_eq] at this assumption · congr exact cantor_injective g hg #align function.not_surjective_Type Function.not_surjective_Type /-- `g` is a partial inverse to `f` (an injective but not necessarily surjective function) if `g y = some x` implies `f x = y`, and `g y = none` implies that `y` is not in the range of `f`. -/ def IsPartialInv {α β} (f : α → β) (g : β → Option α) : Prop := ∀ x y, g y = some x ↔ f x = y #align function.is_partial_inv Function.IsPartialInv theorem isPartialInv_left {α β} {f : α → β} {g} (H : IsPartialInv f g) (x) : g (f x) = some x := (H _ _).2 rfl #align function.is_partial_inv_left Function.isPartialInv_left theorem injective_of_isPartialInv {α β} {f : α → β} {g} (H : IsPartialInv f g) : Injective f := fun _ _ h ↦ Option.some.inj <| ((H _ _).2 h).symm.trans ((H _ _).2 rfl) #align function.injective_of_partial_inv Function.injective_of_isPartialInv theorem injective_of_isPartialInv_right {α β} {f : α → β} {g} (H : IsPartialInv f g) (x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := ((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) #align function.injective_of_partial_inv_right Function.injective_of_isPartialInv_right theorem LeftInverse.comp_eq_id {f : α → β} {g : β → α} (h : LeftInverse f g) : f ∘ g = id := funext h #align function.left_inverse.comp_eq_id Function.LeftInverse.comp_eq_id theorem leftInverse_iff_comp {f : α → β} {g : β → α} : LeftInverse f g ↔ f ∘ g = id := ⟨LeftInverse.comp_eq_id, congr_fun⟩ #align function.left_inverse_iff_comp Function.leftInverse_iff_comp theorem RightInverse.comp_eq_id {f : α → β} {g : β → α} (h : RightInverse f g) : g ∘ f = id := funext h #align function.right_inverse.comp_eq_id Function.RightInverse.comp_eq_id theorem rightInverse_iff_comp {f : α → β} {g : β → α} : RightInverse f g ↔ g ∘ f = id := ⟨RightInverse.comp_eq_id, congr_fun⟩ #align function.right_inverse_iff_comp Function.rightInverse_iff_comp theorem LeftInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : LeftInverse f g) (hh : LeftInverse h i) : LeftInverse (h ∘ f) (g ∘ i) := fun a ↦ show h (f (g (i a))) = a by rw [hf (i a), hh a] #align function.left_inverse.comp Function.LeftInverse.comp theorem RightInverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} (hf : RightInverse f g) (hh : RightInverse h i) : RightInverse (h ∘ f) (g ∘ i) := LeftInverse.comp hh hf #align function.right_inverse.comp Function.RightInverse.comp theorem LeftInverse.rightInverse {f : α → β} {g : β → α} (h : LeftInverse g f) : RightInverse f g := h #align function.left_inverse.right_inverse Function.LeftInverse.rightInverse theorem RightInverse.leftInverse {f : α → β} {g : β → α} (h : RightInverse g f) : LeftInverse f g := h #align function.right_inverse.left_inverse Function.RightInverse.leftInverse theorem LeftInverse.surjective {f : α → β} {g : β → α} (h : LeftInverse f g) : Surjective f := h.rightInverse.surjective #align function.left_inverse.surjective Function.LeftInverse.surjective theorem RightInverse.injective {f : α → β} {g : β → α} (h : RightInverse f g) : Injective f := h.leftInverse.injective #align function.right_inverse.injective Function.RightInverse.injective theorem LeftInverse.rightInverse_of_injective {f : α → β} {g : β → α} (h : LeftInverse f g) (hf : Injective f) : RightInverse f g := fun x ↦ hf <| h (f x) #align function.left_inverse.right_inverse_of_injective Function.LeftInverse.rightInverse_of_injective theorem LeftInverse.rightInverse_of_surjective {f : α → β} {g : β → α} (h : LeftInverse f g) (hg : Surjective g) : RightInverse f g := fun x ↦ let ⟨y, hy⟩ := hg x; hy ▸ congr_arg g (h y) #align function.left_inverse.right_inverse_of_surjective Function.LeftInverse.rightInverse_of_surjective theorem RightInverse.leftInverse_of_surjective {f : α → β} {g : β → α} : RightInverse f g → Surjective f → LeftInverse f g := LeftInverse.rightInverse_of_surjective #align function.right_inverse.left_inverse_of_surjective Function.RightInverse.leftInverse_of_surjective theorem RightInverse.leftInverse_of_injective {f : α → β} {g : β → α} : RightInverse f g → Injective g → LeftInverse f g := LeftInverse.rightInverse_of_injective #align function.right_inverse.left_inverse_of_injective Function.RightInverse.leftInverse_of_injective theorem LeftInverse.eq_rightInverse {f : α → β} {g₁ g₂ : β → α} (h₁ : LeftInverse g₁ f) (h₂ : RightInverse g₂ f) : g₁ = g₂ := calc g₁ = g₁ ∘ f ∘ g₂ := by rw [h₂.comp_eq_id, comp.right_id] _ = g₂ := by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] #align function.left_inverse.eq_right_inverse Function.LeftInverse.eq_rightInverse attribute [local instance] Classical.propDecidable /-- We can use choice to construct explicitly a partial inverse for a given injective function `f`. -/ noncomputable def partialInv {α β} (f : α → β) (b : β) : Option α := if h : ∃ a, f a = b then some (Classical.choose h) else none #align function.partial_inv Function.partialInv theorem partialInv_of_injective {α β} {f : α → β} (I : Injective f) : IsPartialInv f (partialInv f) | a, b => ⟨fun h => have hpi : partialInv f b = if h : ∃ a, f a = b then some (Classical.choose h) else none := rfl if h' : ∃ a, f a = b then by rw [hpi, dif_pos h'] at h injection h with h subst h apply Classical.choose_spec h' else by rw [hpi, dif_neg h'] at h; contradiction, fun e => e ▸ have h : ∃ a', f a' = f a := ⟨_, rfl⟩ (dif_pos h).trans (congr_arg _ (I <| Classical.choose_spec h))⟩ #align function.partial_inv_of_injective Function.partialInv_of_injective theorem partialInv_left {α β} {f : α → β} (I : Injective f) : ∀ x, partialInv f (f x) = some x := isPartialInv_left (partialInv_of_injective I) #align function.partial_inv_left Function.partialInv_left end section InvFun variable {α β : Sort*} [Nonempty α] {f : α → β} {a : α} {b : β} attribute [local instance] Classical.propDecidable /-- The inverse of a function (which is a left inverse if `f` is injective and a right inverse if `f` is surjective). -/ -- Explicit Sort so that `α` isn't inferred to be Prop via `exists_prop_decidable` noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α #align function.inv_fun Function.invFun theorem invFun_eq (h : ∃ a, f a = b) : f (invFun f b) = b := by simp only [invFun, dif_pos h, h.choose_spec] #align function.inv_fun_eq Function.invFun_eq theorem apply_invFun_apply {α : Type u₁} {β : Type u₂} {f : α → β} {a : α} : f (@invFun _ _ ⟨a⟩ f (f a)) = f a := @invFun_eq _ _ ⟨a⟩ _ _ ⟨_, rfl⟩ theorem invFun_neg (h : ¬∃ a, f a = b) : invFun f b = Classical.choice ‹_› := dif_neg h #align function.inv_fun_neg Function.invFun_neg theorem invFun_eq_of_injective_of_rightInverse {g : β → α} (hf : Injective f) (hg : RightInverse g f) : invFun f = g := funext fun b ↦ hf (by rw [hg b] exact invFun_eq ⟨g b, hg b⟩) #align function.inv_fun_eq_of_injective_of_right_inverse Function.invFun_eq_of_injective_of_rightInverse theorem rightInverse_invFun (hf : Surjective f) : RightInverse (invFun f) f := fun b ↦ invFun_eq <| hf b #align function.right_inverse_inv_fun Function.rightInverse_invFun theorem leftInverse_invFun (hf : Injective f) : LeftInverse (invFun f) f := fun b ↦ hf <| invFun_eq ⟨b, rfl⟩ #align function.left_inverse_inv_fun Function.leftInverse_invFun theorem invFun_surjective (hf : Injective f) : Surjective (invFun f) := (leftInverse_invFun hf).surjective #align function.inv_fun_surjective Function.invFun_surjective theorem invFun_comp (hf : Injective f) : invFun f ∘ f = id := funext <| leftInverse_invFun hf #align function.inv_fun_comp Function.invFun_comp theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := ⟨invFun f, leftInverse_invFun hf⟩ #align function.injective.has_left_inverse Function.Injective.hasLeftInverse theorem injective_iff_hasLeftInverse : Injective f ↔ HasLeftInverse f := ⟨Injective.hasLeftInverse, HasLeftInverse.injective⟩ #align function.injective_iff_has_left_inverse Function.injective_iff_hasLeftInverse end InvFun section SurjInv variable {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} /-- The inverse of a surjective function. (Unlike `invFun`, this does not require `α` to be inhabited.) -/ noncomputable def surjInv {f : α → β} (h : Surjective f) (b : β) : α := Classical.choose (h b) #align function.surj_inv Function.surjInv theorem surjInv_eq (h : Surjective f) (b) : f (surjInv h b) = b := Classical.choose_spec (h b) #align function.surj_inv_eq Function.surjInv_eq theorem rightInverse_surjInv (hf : Surjective f) : RightInverse (surjInv hf) f := surjInv_eq hf #align function.right_inverse_surj_inv Function.rightInverse_surjInv theorem leftInverse_surjInv (hf : Bijective f) : LeftInverse (surjInv hf.2) f := rightInverse_of_injective_of_leftInverse hf.1 (rightInverse_surjInv hf.2) #align function.left_inverse_surj_inv Function.leftInverse_surjInv theorem Surjective.hasRightInverse (hf : Surjective f) : HasRightInverse f := ⟨_, rightInverse_surjInv hf⟩ #align function.surjective.has_right_inverse Function.Surjective.hasRightInverse theorem surjective_iff_hasRightInverse : Surjective f ↔ HasRightInverse f := ⟨Surjective.hasRightInverse, HasRightInverse.surjective⟩ #align function.surjective_iff_has_right_inverse Function.surjective_iff_hasRightInverse theorem bijective_iff_has_inverse : Bijective f ↔ ∃ g, LeftInverse g f ∧ RightInverse g f := ⟨fun hf ↦ ⟨_, leftInverse_surjInv hf, rightInverse_surjInv hf.2⟩, fun ⟨_, gl, gr⟩ ↦ ⟨gl.injective, gr.surjective⟩⟩ #align function.bijective_iff_has_inverse Function.bijective_iff_has_inverse theorem injective_surjInv (h : Surjective f) : Injective (surjInv h) := (rightInverse_surjInv h).injective #align function.injective_surj_inv Function.injective_surjInv theorem surjective_to_subsingleton [na : Nonempty α] [Subsingleton β] (f : α → β) : Surjective f := fun _ ↦ let ⟨a⟩ := na; ⟨a, Subsingleton.elim _ _⟩ #align function.surjective_to_subsingleton Function.surjective_to_subsingleton /-- Composition by a surjective function on the left is itself surjective. -/ theorem Surjective.comp_left {g : β → γ} (hg : Surjective g) : Surjective (g ∘ · : (α → β) → α → γ) := fun f ↦ ⟨surjInv hg ∘ f, funext fun _ ↦ rightInverse_surjInv _ _⟩ #align function.surjective.comp_left Function.Surjective.comp_left /-- Composition by a bijective function on the left is itself bijective. -/ theorem Bijective.comp_left {g : β → γ} (hg : Bijective g) : Bijective (g ∘ · : (α → β) → α → γ) := ⟨hg.injective.comp_left, hg.surjective.comp_left⟩ #align function.bijective.comp_left Function.Bijective.comp_left end SurjInv section Update variable {α : Sort u} {β : α → Sort v} {α' : Sort w} [DecidableEq α] [DecidableEq α'] {f g : (a : α) → β a} {a : α} {b : β a} /-- Replacing the value of a function at a given point by a given value. -/ def update (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : β a := if h : a = a' then Eq.ndrec v h.symm else f a #align function.update Function.update @[simp] theorem update_same (a : α) (v : β a) (f : ∀ a, β a) : update f a v a = v := dif_pos rfl #align function.update_same Function.update_same @[simp] theorem update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : ∀ a, β a) : update f a' v a = f a := dif_neg h #align function.update_noteq Function.update_noteq /-- On non-dependent functions, `Function.update` can be expressed as an `ite` -/ theorem update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : update f a' b a = if a = a' then b else f a := by rcases Decidable.eq_or_ne a a' with rfl | hne <;> simp [*] #align function.update_apply Function.update_apply @[nontriviality] theorem update_eq_const_of_subsingleton [Subsingleton α] (a : α) (v : α') (f : α → α') : update f a v = const α v := funext fun a' ↦ Subsingleton.elim a a' ▸ update_same _ _ _ theorem surjective_eval {α : Sort u} {β : α → Sort v} [h : ∀ a, Nonempty (β a)] (a : α) : Surjective (eval a : (∀ a, β a) → β a) := fun b ↦ ⟨@update _ _ (Classical.decEq α) (fun a ↦ (h a).some) a b, @update_same _ _ (Classical.decEq α) _ _ _⟩ #align function.surjective_eval Function.surjective_eval theorem update_injective (f : ∀ a, β a) (a' : α) : Injective (update f a') := fun v v' h ↦ by have := congr_fun h a' rwa [update_same, update_same] at this #align function.update_injective Function.update_injective lemma forall_update_iff (f : ∀a, β a) {a : α} {b : β a} (p : ∀a, β a → Prop) : (∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x, x ≠ a → p x (f x) := by rw [← and_forall_ne a, update_same] simp (config := { contextual := true }) #align function.forall_update_iff Function.forall_update_iff theorem exists_update_iff (f : ∀ a, β a) {a : α} {b : β a} (p : ∀ a, β a → Prop) : (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ (x : _) (_ : x ≠ a), p x (f x) := by rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b] simp [-not_and, not_and_or] #align function.exists_update_iff Function.exists_update_iff theorem update_eq_iff {a : α} {b : β a} {f g : ∀ a, β a} : update f a b = g ↔ b = g a ∧ ∀ (x) (_ : x ≠ a), f x = g x := funext_iff.trans <| forall_update_iff _ fun x y ↦ y = g x #align function.update_eq_iff Function.update_eq_iff theorem eq_update_iff {a : α} {b : β a} {f g : ∀ a, β a} : g = update f a b ↔ g a = b ∧ ∀ (x) (_ : x ≠ a), g x = f x := funext_iff.trans <| forall_update_iff _ fun x y ↦ g x = y #align function.eq_update_iff Function.eq_update_iff @[simp] lemma update_eq_self_iff : update f a b = f ↔ b = f a := by simp [update_eq_iff] #align function.update_eq_self_iff Function.update_eq_self_iff @[simp] lemma eq_update_self_iff : f = update f a b ↔ f a = b := by simp [eq_update_iff] #align function.eq_update_self_iff Function.eq_update_self_iff lemma ne_update_self_iff : f ≠ update f a b ↔ f a ≠ b := eq_update_self_iff.not #align function.ne_update_self_iff Function.ne_update_self_iff lemma update_ne_self_iff : update f a b ≠ f ↔ b ≠ f a := update_eq_self_iff.not #align function.update_ne_self_iff Function.update_ne_self_iff @[simp] theorem update_eq_self (a : α) (f : ∀ a, β a) : update f a (f a) = f := update_eq_iff.2 ⟨rfl, fun _ _ ↦ rfl⟩ #align function.update_eq_self Function.update_eq_self theorem update_comp_eq_of_forall_ne' {α'} (g : ∀ a, β a) {f : α' → α} {i : α} (a : β i) (h : ∀ x, f x ≠ i) : (fun j ↦ (update g i a) (f j)) = fun j ↦ g (f j) := funext fun _ ↦ update_noteq (h _) _ _ #align function.update_comp_eq_of_forall_ne' Function.update_comp_eq_of_forall_ne' /-- Non-dependent version of `Function.update_comp_eq_of_forall_ne'` -/ theorem update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) (h : ∀ x, f x ≠ i) : update g i a ∘ f = g ∘ f := update_comp_eq_of_forall_ne' g a h #align function.update_comp_eq_of_forall_ne Function.update_comp_eq_of_forall_ne theorem update_comp_eq_of_injective' (g : ∀ a, β a) {f : α' → α} (hf : Function.Injective f) (i : α') (a : β (f i)) : (fun j ↦ update g (f i) a (f j)) = update (fun i ↦ g (f i)) i a := eq_update_iff.2 ⟨update_same _ _ _, fun _ hj ↦ update_noteq (hf.ne hj) _ _⟩ #align function.update_comp_eq_of_injective' Function.update_comp_eq_of_injective' /-- Non-dependent version of `Function.update_comp_eq_of_injective'` -/ theorem update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} (hf : Function.Injective f) (i : α) (a : β) : Function.update g (f i) a ∘ f = Function.update (g ∘ f) i a := update_comp_eq_of_injective' g hf i a #align function.update_comp_eq_of_injective Function.update_comp_eq_of_injective theorem apply_update {ι : Sort*} [DecidableEq ι] {α β : ι → Sort*} (f : ∀ i, α i → β i) (g : ∀ i, α i) (i : ι) (v : α i) (j : ι) : f j (update g i v j) = update (fun k ↦ f k (g k)) i (f i v) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update Function.apply_update theorem apply_update₂ {ι : Sort*} [DecidableEq ι] {α β γ : ι → Sort*} (f : ∀ i, α i → β i → γ i) (g : ∀ i, α i) (h : ∀ i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : f j (update g i v j) (update h i w j) = update (fun k ↦ f k (g k) (h k)) i (f i v w) j := by by_cases h:j = i · subst j simp · simp [h] #align function.apply_update₂ Function.apply_update₂ theorem pred_update (P : ∀ ⦃a⦄, β a → Prop) (f : ∀ a, β a) (a' : α) (v : β a') (a : α) : P (update f a' v a) ↔ a = a' ∧ P v ∨ a ≠ a' ∧ P (f a) := by rw [apply_update P, update_apply, ite_prop_iff_or] theorem comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : f ∘ update g i v = update (f ∘ g) i (f v) := funext <| apply_update _ _ _ _ #align function.comp_update Function.comp_update theorem update_comm {α} [DecidableEq α] {β : α → Sort*} {a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : ∀ a, β a) : update (update f a v) b w = update (update f b w) a v := by funext c simp only [update] by_cases h₁ : c = b <;> by_cases h₂ : c = a · rw [dif_pos h₁, dif_pos h₂] cases h (h₂.symm.trans h₁) · rw [dif_pos h₁, dif_pos h₁, dif_neg h₂] · rw [dif_neg h₁, dif_neg h₁, dif_pos h₂] · rw [dif_neg h₁, dif_neg h₁, dif_neg h₂] #align function.update_comm Function.update_comm @[simp] theorem update_idem {α} [DecidableEq α] {β : α → Sort*} {a : α} (v w : β a) (f : ∀ a, β a) : update (update f a v) a w = update f a w := by funext b by_cases h : b = a <;> simp [update, h] #align function.update_idem Function.update_idem end Update noncomputable section Extend attribute [local instance] Classical.propDecidable variable {α β γ : Sort*} {f : α → β} /-- Extension of a function `g : α → γ` along a function `f : α → β`. For every `a : α`, `f a` is sent to `g a`. `f` might not be surjective, so we use an auxiliary function `j : β → γ` by sending `b : β` not in the range of `f` to `j b`. If you do not care about the behavior outside the range, `j` can be used as a junk value by setting it to be `0` or `Classical.arbitrary` (assuming `γ` is nonempty). This definition is mathematically meaningful only when `f a₁ = f a₂ → g a₁ = g a₂` (spelled `g.FactorsThrough f`). In particular this holds if `f` is injective. A typical use case is extending a function from a subtype to the entire type. If you wish to extend `g : {b : β // p b} → γ` to a function `β → γ`, you should use `Function.extend Subtype.val g j`. -/ def extend (f : α → β) (g : α → γ) (j : β → γ) : β → γ := fun b ↦ if h : ∃ a, f a = b then g (Classical.choose h) else j b #align function.extend Function.extend /-- g factors through f : `f a = f b → g a = g b` -/ def FactorsThrough (g : α → γ) (f : α → β) : Prop := ∀ ⦃a b⦄, f a = f b → g a = g b #align function.factors_through Function.FactorsThrough theorem extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [Decidable (∃ a, f a = b)] : extend f g e' b = if h : ∃ a, f a = b then g (Classical.choose h) else e' b := by unfold extend congr #align function.extend_def Function.extend_def lemma Injective.factorsThrough (hf : Injective f) (g : α → γ) : g.FactorsThrough f := fun _ _ h => congr_arg g (hf h) #align function.injective.factors_through Function.Injective.factorsThrough lemma FactorsThrough.extend_apply {g : α → γ} (hf : g.FactorsThrough f) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := by simp only [extend_def, dif_pos, exists_apply_eq_apply] exact hf (Classical.choose_spec (exists_apply_eq_apply f a)) #align function.factors_through.extend_apply Function.FactorsThrough.extend_apply @[simp] theorem Injective.extend_apply (hf : Injective f) (g : α → γ) (e' : β → γ) (a : α) : extend f g e' (f a) = g a := (hf.factorsThrough g).extend_apply e' a #align function.injective.extend_apply Function.Injective.extend_apply @[simp] theorem extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : extend f g e' b = e' b := by simp [Function.extend_def, hb] #align function.extend_apply' Function.extend_apply' lemma factorsThrough_iff (g : α → γ) [Nonempty γ] : g.FactorsThrough f ↔ ∃ (e : β → γ), g = e ∘ f := ⟨fun hf => ⟨extend f g (const β (Classical.arbitrary γ)), funext (fun x => by simp only [comp_apply, hf.extend_apply])⟩, fun h _ _ hf => by rw [Classical.choose_spec h, comp_apply, comp_apply, hf]⟩ #align function.factors_through_iff Function.factorsThrough_iff lemma apply_extend {δ} {g : α → γ} (F : γ → δ) (f : α → β) (e' : β → γ) (b : β) : F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := apply_dite F _ _ _ #align function.factors_through.apply_extend Function.apply_extend #align function.injective.apply_extend Function.apply_extend theorem extend_injective (hf : Injective f) (e' : β → γ) : Injective fun g ↦ extend f g e' := by intro g₁ g₂ hg refine' funext fun x ↦ _ have H := congr_fun hg (f x) simp only [hf.extend_apply] at H exact H #align function.extend_injective Function.extend_injective lemma FactorsThrough.extend_comp {g : α → γ} (e' : β → γ) (hf : FactorsThrough g f) : extend f g e' ∘ f = g := funext $ fun a => hf.extend_apply e' a #align function.factors_through.extend_comp Function.FactorsThrough.extend_comp @[simp] theorem extend_comp (hf : Injective f) (g : α → γ) (e' : β → γ) : extend f g e' ∘ f = g := funext fun a ↦ hf.extend_apply g e' a #align function.extend_comp Function.extend_comp theorem Injective.surjective_comp_right' (hf : Injective f) (g₀ : β → γ) : Surjective fun g : β → γ ↦ g ∘ f := fun g ↦ ⟨extend f g g₀, extend_comp hf _ _⟩ #align function.injective.surjective_comp_right' Function.Injective.surjective_comp_right' theorem Injective.surjective_comp_right [Nonempty γ] (hf : Injective f) : Surjective fun g : β → γ ↦ g ∘ f := hf.surjective_comp_right' fun _ ↦ Classical.choice ‹_› #align function.injective.surjective_comp_right Function.Injective.surjective_comp_right theorem Bijective.comp_right (hf : Bijective f) : Bijective fun g : β → γ ↦ g ∘ f := ⟨hf.surjective.injective_comp_right, fun g ↦ ⟨g ∘ surjInv hf.surjective, by simp only [comp.assoc g _ f, (leftInverse_surjInv hf).comp_eq_id, comp.right_id]⟩⟩ #align function.bijective.comp_right Function.Bijective.comp_right end Extend theorem uncurry_def {α β γ} (f : α → β → γ) : uncurry f = fun p ↦ f p.1 p.2 := rfl #align function.uncurry_def Function.uncurry_def @[simp] theorem uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : uncurry f (x, y) = f x y := rfl #align function.uncurry_apply_pair Function.uncurry_apply_pair @[simp] theorem curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl #align function.curry_apply Function.curry_apply section Bicomp variable {α β γ δ ε : Type*} /-- Compose a binary function `f` with a pair of unary functions `g` and `h`. If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := f (g a) (h b) #align function.bicompl Function.bicompl /-- Compose a unary function `f` with a binary function `g`. -/ def bicompr (f : γ → δ) (g : α → β → γ) (a b) := f (g a b) #align function.bicompr Function.bicompr -- Suggested local notation: local notation f " ∘₂ " g => bicompr f g theorem uncurry_bicompr (f : α → β → γ) (g : γ → δ) : uncurry (g ∘₂ f) = g ∘ uncurry f := rfl #align function.uncurry_bicompr Function.uncurry_bicompr theorem uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : uncurry (bicompl f g h) = uncurry f ∘ Prod.map g h := rfl #align function.uncurry_bicompl Function.uncurry_bicompl end Bicomp section Uncurry variable {α β γ δ : Type*} /-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ class HasUncurry (α : Type*) (β : outParam (Type*)) (γ : outParam (Type*)) where /-- Uncurrying operator. The most generic use is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances for bundled maps.-/ uncurry : α → β → γ #align function.has_uncurry Function.HasUncurry notation:arg "↿" x:arg => HasUncurry.uncurry x instance hasUncurryBase : HasUncurry (α → β) α β := ⟨id⟩ instance hasUncurryInduction [HasUncurry β γ δ] : HasUncurry (α → β) (α × γ) δ := ⟨fun f p ↦ (↿(f p.1)) p.2⟩ end Uncurry /-- A function is involutive, if `f ∘ f = id`. -/ def Involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x #align function.involutive Function.Involutive theorem _root_.Bool.involutive_not : Involutive not := Bool.not_not namespace Involutive variable {α : Sort u} {f : α → α} (h : Involutive f) @[simp] theorem comp_self : f ∘ f = id := funext h #align function.involutive.comp_self Function.Involutive.comp_self protected theorem leftInverse : LeftInverse f f := h #align function.involutive.left_inverse Function.Involutive.leftInverse protected theorem rightInverse : RightInverse f f := h #align function.involutive.right_inverse Function.Involutive.rightInverse protected theorem injective : Injective f := h.leftInverse.injective #align function.involutive.injective Function.Involutive.injective protected theorem surjective : Surjective f := fun x ↦ ⟨f x, h x⟩ #align function.involutive.surjective Function.Involutive.surjective protected theorem bijective : Bijective f := ⟨h.injective, h.surjective⟩ #align function.involutive.bijective Function.Involutive.bijective /-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ protected theorem ite_not (P : Prop) [Decidable P] (x : α) : f (ite P x (f x)) = ite (¬P) x (f x) := by rw [apply_ite f, h, ite_not] #align function.involutive.ite_not Function.Involutive.ite_not /-- An involution commutes across an equality. Compare to `Function.Injective.eq_iff`. -/ protected theorem eq_iff {x y : α} : f x = y ↔ x = f y := h.injective.eq_iff' (h y) #align function.involutive.eq_iff Function.Involutive.eq_iff end Involutive @[simp] lemma symmetric_apply_eq_iff {f : α → α} : Symmetric (f · = ·) ↔ Involutive f := by simp [Symmetric, Involutive] /-- The property of a binary function `f : α → β → γ` being injective. Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. -/ def Injective2 {α β γ} (f : α → β → γ) : Prop := ∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ #align function.injective2 Function.Injective2 namespace Injective2 variable {α β γ : Sort*} {f : α → β → γ} /-- A binary injective function is injective when only the left argument varies. -/ protected theorem left (hf : Injective2 f) (b : β) : Function.Injective fun a ↦ f a b := fun _ _ h ↦ (hf h).left #align function.injective2.left Function.Injective2.left /-- A binary injective function is injective when only the right argument varies. -/ protected theorem right (hf : Injective2 f) (a : α) : Function.Injective (f a) := fun _ _ h ↦ (hf h).right #align function.injective2.right Function.Injective2.right protected theorem uncurry {α β γ : Type*} {f : α → β → γ} (hf : Injective2 f) : Function.Injective (uncurry f) := fun ⟨_, _⟩ ⟨_, _⟩ h ↦ (hf h).elim (congr_arg₂ _) #align function.injective2.uncurry Function.Injective2.uncurry /-- As a map from the left argument to a unary function, `f` is injective. -/ theorem left' (hf : Injective2 f) [Nonempty β] : Function.Injective f := fun a₁ a₂ h ↦ let ⟨b⟩ := ‹Nonempty β› hf.left b <| (congr_fun h b : _) #align function.injective2.left' Function.Injective2.left' /-- As a map from the right argument to a unary function, `f` is injective. -/ theorem right' (hf : Injective2 f) [Nonempty α] : Function.Injective fun b a ↦ f a b := fun b₁ b₂ h ↦ let ⟨a⟩ := ‹Nonempty α› hf.right a <| (congr_fun h a : _) #align function.injective2.right' Function.Injective2.right' theorem eq_iff (hf : Injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := ⟨fun h ↦ hf h, fun ⟨h1, h2⟩ ↦ congr_arg₂ f h1 h2⟩ #align function.injective2.eq_iff Function.Injective2.eq_iff end Injective2 section Sometimes attribute [local instance] Classical.propDecidable /-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially interesting in the case where `α` is a proposition, in which case `f` is necessarily a constant function, so that `sometimes f = f a` for all `a`. -/ noncomputable def sometimes {α β} [Nonempty β] (f : α → β) : β := if h : Nonempty α then f (Classical.choice h) else Classical.choice ‹_› #align function.sometimes Function.sometimes theorem sometimes_eq {p : Prop} {α} [Nonempty α] (f : p → α) (a : p) : sometimes f = f a := dif_pos ⟨a⟩ #align function.sometimes_eq Function.sometimes_eq theorem sometimes_spec {p : Prop} {α} [Nonempty α] (P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := by rwa [sometimes_eq] #align function.sometimes_spec Function.sometimes_spec end Sometimes end Function /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, ∀ {a b}, r a b ↔ f a = b := by refine ⟨fun h ↦ ?_, ?_⟩ · refine ⟨fun a ↦ (h a).choose, fun hr ↦ ?_, fun h' ↦ h' ▸ ?_⟩ exacts [((h _).choose_spec.2 _ hr).symm, (h _).choose_spec.1] · rintro ⟨f, hf⟩ simp [hf] /-- A relation `r : α → β → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some function `f`. -/ lemma forall_existsUnique_iff' {r : α → β → Prop} : (∀ a, ∃! b, r a b) ↔ ∃ f : α → β, r = (f · = ·) := by simp [forall_existsUnique_iff, Function.funext_iff] /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff' {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ r = (f · = ·) := by refine ⟨fun h ↦ ?_, fun ⟨f, _, hf⟩ ↦ forall_existsUnique_iff'.2 ⟨f, hf⟩⟩ rcases forall_existsUnique_iff'.1 h with ⟨f, rfl : r = _⟩ exact ⟨f, symmetric_apply_eq_iff.1 hr, rfl⟩ /-- A symmetric relation `r : α → α → Prop` is "function-like" (for each `a` there exists a unique `b` such that `r a b`) if and only if it is `(f · = ·)` for some involutive function `f`. -/ protected lemma Symmetric.forall_existsUnique_iff {r : α → α → Prop} (hr : Symmetric r) : (∀ a, ∃! b, r a b) ↔ ∃ f : α → α, Involutive f ∧ ∀ {a b}, r a b ↔ f a = b := by simp [hr.forall_existsUnique_iff', funext_iff] /-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ def Set.piecewise {α : Type u} {β : α → Sort v} (s : Set α) (f g : ∀ i, β i) [∀ j, Decidable (j ∈ s)] : ∀ i, β i := fun i ↦ if i ∈ s then f i else g i #align set.piecewise Set.piecewise /-! ### Bijectivity of `Eq.rec`, `Eq.mp`, `Eq.mpr`, and `cast` -/ theorem eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : ∀ {a a' : α} (h : a = a'), Function.Bijective (@Eq.ndrec _ _ C · _ h) | _, _, rfl => ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_rec_on_bijective eq_rec_on_bijective theorem eq_mp_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mp h) := by -- TODO: mathlib3 uses `eq_rec_on_bijective`, difference in elaboration here -- due to `@[macro_inline]` possibly? cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mp_bijective eq_mp_bijective theorem eq_mpr_bijective {α β : Sort _} (h : α = β) : Function.Bijective (Eq.mpr h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align eq_mpr_bijective eq_mpr_bijective theorem cast_bijective {α β : Sort _} (h : α = β) : Function.Bijective (cast h) := by cases h refine ⟨fun _ _ ↦ id, fun x ↦ ⟨x, rfl⟩⟩ #align cast_bijective cast_bijective /-! Note these lemmas apply to `Type*` not `Sort*`, as the latter interferes with `simp`, and is trivial anyway.-/ @[simp] theorem eq_rec_inj {α : Sort*} {a a' : α} (h : a = a') {C : α → Type*} (x y : C a) : (Eq.ndrec x h : C a') = Eq.ndrec y h ↔ x = y := (eq_rec_on_bijective h).injective.eq_iff #align eq_rec_inj eq_rec_inj @[simp] theorem cast_inj {α β : Type u} (h : α = β) {x y : α} : cast h x = cast h y ↔ x = y := (cast_bijective h).injective.eq_iff #align cast_inj cast_inj theorem Function.LeftInverse.eq_rec_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : -- TODO: mathlib3 uses `(congr_arg f (h a)).rec (C (g (f a)))` for LHS @Eq.rec β (f (g (f a))) (fun x _ ↦ γ x) (C (g (f a))) (f a) (congr_arg f (h a)) = C a := eq_of_heq <| (eq_rec_heq _ _).trans <| by rw [h] #align function.left_inverse.eq_rec_eq Function.LeftInverse.eq_rec_eq theorem Function.LeftInverse.eq_rec_on_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : -- TODO: mathlib3 uses `(congr_arg f (h a)).recOn (C (g (f a)))` for LHS @Eq.recOn β (f (g (f a))) (fun x _ ↦ γ x) (f a) (congr_arg f (h a)) (C (g (f a))) = C a := h.eq_rec_eq _ _ #align function.left_inverse.eq_rec_on_eq Function.LeftInverse.eq_rec_on_eq theorem Function.LeftInverse.cast_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : cast (congr_arg (fun a ↦ γ (f a)) (h a)) (C (g (f a))) = C a := by
rw [cast_eq_iff_heq, h]
theorem Function.LeftInverse.cast_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : cast (congr_arg (fun a ↦ γ (f a)) (h a)) (C (g (f a))) = C a := by
Mathlib.Logic.Function.Basic.1088_0.QX1TCPxnrBJfF8i
theorem Function.LeftInverse.cast_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} (h : Function.LeftInverse g f) (C : ∀ a : α, γ (f a)) (a : α) : cast (congr_arg (fun a ↦ γ (f a)) (h a)) (C (g (f a))) = C a
Mathlib_Logic_Function_Basic
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π f g).base
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by
erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)]
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.48_0.tE6q65npbp8AX2g
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ coequalizerComparison f g (forget C))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)]
rw [← PreservesCoequalizer.iso_hom]
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)]
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.48_0.tE6q65npbp8AX2g
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasLimits C J : Type v inst✝ : Category.{v, v} J F : J ⥤ SheafedSpace C X Y : SheafedSpace C f g : X ⟶ Y ⊢ Epi (coequalizer.π ((forget C).map f) ((forget C).map g) ≫ (PreservesCoequalizer.iso (forget C) f g).hom)
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom]
apply epi_comp
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom]
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.48_0.tE6q65npbp8AX2g
instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x : ↑↑(colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf x)
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by
obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.74_0.tE6q65npbp8AX2g
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.74_0.tE6q65npbp8AX2g
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : LocalRing ↑(PresheafedSpace.stalk ((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace y) ⊢ LocalRing ↑(TopCat.Presheaf.stalk (colimit (F ⋙ forgetToSheafedSpace)).toPresheafedSpace.presheaf ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _
exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.74_0.tE6q65npbp8AX2g
/-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x✝² x✝¹ : Discrete ι j j' : ι x✝ : { as := j } ⟶ { as := j' } f : j = j' ⊢ F.map { down := { down := f } } ≫ (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j' } = (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } ≫ ((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := f } }
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by
subst f
/-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.88_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
ι : Type u F : Discrete ι ⥤ LocallyRingedSpace x✝² x✝¹ : Discrete ι j : ι x✝ : { as := j } ⟶ { as := j } ⊢ F.map { down := { down := (_ : j = j) } } ≫ (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } = (fun j => { val := colimit.ι (F ⋙ forgetToSheafedSpace) j, prop := (_ : ∀ (x : ↑↑(F.obj j).toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) j) x)) }) { as := j } ≫ ((Functor.const (Discrete ι)).obj (coproduct F)).map { down := { down := (_ : j = j) } }
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f;
aesop
/-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f;
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.88_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F ⊢ ∀ (x : ↑↑(coproductCofan F).pt.toPresheafedSpace), IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x)
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by
intro x
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F x : ↑↑(coproductCofan F).pt.toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) x)
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x
obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ≫ PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y
rw [← IsIso.comp_inv_eq] at this
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ⊢ IsLocalRingHom (PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this
erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)]
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) ⊢ IsLocalRingHom ((eqToHom (_ : PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace ((colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base y) = PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (((forgetToSheafedSpace.mapCocone s).ι.app i).base y)) ≫ PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)]
haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)]
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
case intro.intro.refl ι : Type u F : Discrete ι ⥤ LocallyRingedSpace s : Cocone F i : Discrete ι y : ↑↑((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace this✝ : PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y) = PresheafedSpace.stalkMap (colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) ((colimit.ι (F ⋙ forgetToSheafedSpace) i).base y) this : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) ⊢ IsLocalRingHom ((eqToHom (_ : PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace ((colimit.ι (F ⋙ forgetToSheafedSpace) i ≫ colimit.desc (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)).base y) = PresheafedSpace.stalk (forgetToSheafedSpace.mapCocone s).pt.toPresheafedSpace (((forgetToSheafedSpace.mapCocone s).ι.app i).base y)) ≫ PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) ≫ inv (PresheafedSpace.stalkMap (colimit.ι (F ⋙ forgetToSheafedSpace) i) y))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y
infer_instance
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.97_0.tE6q65npbp8AX2g
/-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace ⊢ IsLocalRingHom ((coequalizer.π f.val g.val).c.app (op U))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y infer_instance⟩ fac s j := LocallyRingedSpace.Hom.ext _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _ _) uniq s f h := LocallyRingedSpace.Hom.ext _ _ (IsColimit.uniq _ (forgetToSheafedSpace.mapCocone s) f.1 fun j => congr_arg LocallyRingedSpace.Hom.val (h j)) #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit AlgebraicGeometry.LocallyRingedSpace.coproductCofanIsColimit instance : HasCoproducts.{u} LocallyRingedSpace.{u} := fun _ => ⟨fun F => ⟨⟨⟨_, coproductCofanIsColimit F⟩⟩⟩⟩ noncomputable instance (J : Type _) : PreservesColimitsOfShape (Discrete.{u} J) forgetToSheafedSpace.{u} := ⟨fun {G} => preservesColimitOfPreservesColimitCocone (coproductCofanIsColimit G) ((colimit.isColimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _).ofIsoColimit (Cocones.ext (Iso.refl _) fun _ => Category.comp_id _))⟩ end HasCoproducts section HasCoequalizer variable {X Y : LocallyRingedSpace.{v}} (f g : X ⟶ Y) namespace HasCoequalizer instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by
have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.145_0.tE6q65npbp8AX2g
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U))
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ coequalizerComparison f.val g.val SheafedSpace.forgetToPresheafedSpace = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom ((coequalizer.π f.val g.val).c.app (op U))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y infer_instance⟩ fac s j := LocallyRingedSpace.Hom.ext _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _ _) uniq s f h := LocallyRingedSpace.Hom.ext _ _ (IsColimit.uniq _ (forgetToSheafedSpace.mapCocone s) f.1 fun j => congr_arg LocallyRingedSpace.Hom.val (h j)) #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit AlgebraicGeometry.LocallyRingedSpace.coproductCofanIsColimit instance : HasCoproducts.{u} LocallyRingedSpace.{u} := fun _ => ⟨fun F => ⟨⟨⟨_, coproductCofanIsColimit F⟩⟩⟩⟩ noncomputable instance (J : Type _) : PreservesColimitsOfShape (Discrete.{u} J) forgetToSheafedSpace.{u} := ⟨fun {G} => preservesColimitOfPreservesColimitCocone (coproductCofanIsColimit G) ((colimit.isColimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _).ofIsoColimit (Cocones.ext (Iso.refl _) fun _ => Category.comp_id _))⟩ end HasCoproducts section HasCoequalizer variable {X Y : LocallyRingedSpace.{v}} (f g : X ⟶ Y) namespace HasCoequalizer instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace
rw [← PreservesCoequalizer.iso_hom] at this
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.145_0.tE6q65npbp8AX2g
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U))
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom ((coequalizer.π f.val g.val).c.app (op U))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y infer_instance⟩ fac s j := LocallyRingedSpace.Hom.ext _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _ _) uniq s f h := LocallyRingedSpace.Hom.ext _ _ (IsColimit.uniq _ (forgetToSheafedSpace.mapCocone s) f.1 fun j => congr_arg LocallyRingedSpace.Hom.val (h j)) #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit AlgebraicGeometry.LocallyRingedSpace.coproductCofanIsColimit instance : HasCoproducts.{u} LocallyRingedSpace.{u} := fun _ => ⟨fun F => ⟨⟨⟨_, coproductCofanIsColimit F⟩⟩⟩⟩ noncomputable instance (J : Type _) : PreservesColimitsOfShape (Discrete.{u} J) forgetToSheafedSpace.{u} := ⟨fun {G} => preservesColimitOfPreservesColimitCocone (coproductCofanIsColimit G) ((colimit.isColimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _).ofIsoColimit (Cocones.ext (Iso.refl _) fun _ => Category.comp_id _))⟩ end HasCoproducts section HasCoequalizer variable {X Y : LocallyRingedSpace.{v}} (f g : X ⟶ Y) namespace HasCoequalizer instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace rw [← PreservesCoequalizer.iso_hom] at this
erw [SheafedSpace.congr_app this.symm (op U)]
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace rw [← PreservesCoequalizer.iso_hom] at this
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.145_0.tE6q65npbp8AX2g
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U))
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits
X Y : LocallyRingedSpace f g : X ⟶ Y U : Opens ↑↑(coequalizer f.val g.val).toPresheafedSpace this : coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom = SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val) ⊢ IsLocalRingHom ((coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).c.app (op U) ≫ Y.presheaf.map (eqToHom (_ : (Opens.map (coequalizer.π (SheafedSpace.forgetToPresheafedSpace.map f.val) (SheafedSpace.forgetToPresheafedSpace.map g.val) ≫ (PreservesCoequalizer.iso SheafedSpace.forgetToPresheafedSpace f.val g.val).hom).base).op.obj (op U) = (Opens.map (SheafedSpace.forgetToPresheafedSpace.map (coequalizer.π f.val g.val)).base).op.obj (op U))))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Geometry.RingedSpace.LocallyRingedSpace import Mathlib.Algebra.Category.Ring.Constructions import Mathlib.Geometry.RingedSpace.OpenImmersion import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers #align_import algebraic_geometry.locally_ringed_space.has_colimits from "leanprover-community/mathlib"@"533f62f4dd62a5aad24a04326e6e787c8f7e98b1" /-! # Colimits of LocallyRingedSpace We construct the explicit coproducts and coequalizers of `LocallyRingedSpace`. It then follows that `LocallyRingedSpace` has all colimits, and `forget_to_SheafedSpace` preserves them. -/ set_option linter.uppercaseLean3 false namespace AlgebraicGeometry universe v u open CategoryTheory CategoryTheory.Limits Opposite TopologicalSpace namespace SheafedSpace variable {C : Type u} [Category.{v} C] [HasLimits C] variable {J : Type v} [Category.{v} J] (F : J ⥤ SheafedSpace.{_, _, v} C) theorem isColimit_exists_rep {c : Cocone F} (hc : IsColimit c) (x : c.pt) : ∃ (i : J) (y : F.obj i), (c.ι.app i).base y = x := Concrete.isColimit_exists_rep (F ⋙ forget C) (isColimitOfPreserves (forget C) hc) x #align algebraic_geometry.SheafedSpace.is_colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.isColimit_exists_rep -- Porting note : argument `C` of colimit need to be made explicit, odd theorem colimit_exists_rep (x : colimit (C := SheafedSpace C) F) : ∃ (i : J) (y : F.obj i), (colimit.ι F i).base y = x := Concrete.isColimit_exists_rep (F ⋙ SheafedSpace.forget C) (isColimitOfPreserves (SheafedSpace.forget _) (colimit.isColimit F)) x #align algebraic_geometry.SheafedSpace.colimit_exists_rep AlgebraicGeometry.SheafedSpaceₓ.colimit_exists_rep instance {X Y : SheafedSpace C} (f g : X ⟶ Y) : Epi (coequalizer.π f g).base := by erw [← show _ = (coequalizer.π f g).base from ι_comp_coequalizerComparison f g (SheafedSpace.forget C)] rw [← PreservesCoequalizer.iso_hom] apply epi_comp end SheafedSpace namespace LocallyRingedSpace section HasCoproducts variable {ι : Type u} (F : Discrete ι ⥤ LocallyRingedSpace.{u}) -- Porting note : in this section, I marked `CommRingCat` as `CommRingCatMax.{u,u}` -- This is a hack to avoid the following: /- ``` stuck at solving universe constraint u =?= max u ?u.11876 while trying to unify HasLimits CommRingCat with (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) (HasLimitsOfSize CommRingCatMax) ``` -/ /-- The explicit coproduct for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproduct : LocallyRingedSpace where toSheafedSpace := colimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) localRing x := by obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x haveI : LocalRing (((F ⋙ forgetToSheafedSpace).obj i).toPresheafedSpace.stalk y) := (F.obj i).localRing _ exact (asIso (PresheafedSpace.stalkMap (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i : _) y)).symm.commRingCatIsoToRingEquiv.localRing #align algebraic_geometry.LocallyRingedSpace.coproduct AlgebraicGeometry.LocallyRingedSpace.coproduct /-- The explicit coproduct cofan for `F : discrete ι ⥤ LocallyRingedSpace`. -/ noncomputable def coproductCofan : Cocone F where pt := coproduct F ι := { app := fun j => ⟨colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) j, inferInstance⟩ naturality := fun ⟨j⟩ ⟨j'⟩ ⟨⟨(f : j = j')⟩⟩ => by subst f; aesop } #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan AlgebraicGeometry.LocallyRingedSpace.coproductCofan /-- The explicit coproduct cofan constructed in `coproduct_cofan` is indeed a colimit. -/ noncomputable def coproductCofanIsColimit : IsColimit (coproductCofan F) where desc s := ⟨colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s), by intro x obtain ⟨i, y, ⟨⟩⟩ := SheafedSpace.colimit_exists_rep (F ⋙ forgetToSheafedSpace) x have := PresheafedSpace.stalkMap.comp (colimit.ι (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) i) (colimit.desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (F ⋙ forgetToSheafedSpace) (forgetToSheafedSpace.mapCocone s)) y rw [← IsIso.comp_inv_eq] at this erw [← this, PresheafedSpace.stalkMap.congr_hom _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) (forgetToSheafedSpace.mapCocone s) i : _)] haveI : IsLocalRingHom (PresheafedSpace.stalkMap ((forgetToSheafedSpace.mapCocone s).ι.app i) y) := (s.ι.app i).2 y infer_instance⟩ fac s j := LocallyRingedSpace.Hom.ext _ _ (colimit.ι_desc (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _ _) uniq s f h := LocallyRingedSpace.Hom.ext _ _ (IsColimit.uniq _ (forgetToSheafedSpace.mapCocone s) f.1 fun j => congr_arg LocallyRingedSpace.Hom.val (h j)) #align algebraic_geometry.LocallyRingedSpace.coproduct_cofan_is_colimit AlgebraicGeometry.LocallyRingedSpace.coproductCofanIsColimit instance : HasCoproducts.{u} LocallyRingedSpace.{u} := fun _ => ⟨fun F => ⟨⟨⟨_, coproductCofanIsColimit F⟩⟩⟩⟩ noncomputable instance (J : Type _) : PreservesColimitsOfShape (Discrete.{u} J) forgetToSheafedSpace.{u} := ⟨fun {G} => preservesColimitOfPreservesColimitCocone (coproductCofanIsColimit G) ((colimit.isColimit (C := SheafedSpace.{u+1, u, u} CommRingCatMax.{u, u}) _).ofIsoColimit (Cocones.ext (Iso.refl _) fun _ => Category.comp_id _))⟩ end HasCoproducts section HasCoequalizer variable {X Y : LocallyRingedSpace.{v}} (f g : X ⟶ Y) namespace HasCoequalizer instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace rw [← PreservesCoequalizer.iso_hom] at this erw [SheafedSpace.congr_app this.symm (op U)]
rw [PresheafedSpace.comp_c_app, ← PresheafedSpace.colimitPresheafObjIsoComponentwiseLimit_hom_π]
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U)) := by have := ι_comp_coequalizerComparison f.1 g.1 SheafedSpace.forgetToPresheafedSpace rw [← PreservesCoequalizer.iso_hom] at this erw [SheafedSpace.congr_app this.symm (op U)]
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits.145_0.tE6q65npbp8AX2g
instance coequalizer_π_app_isLocalRingHom (U : TopologicalSpace.Opens (coequalizer f.val g.val).carrier) : IsLocalRingHom ((coequalizer.π f.val g.val : _).c.app (op U))
Mathlib_Geometry_RingedSpace_LocallyRingedSpace_HasColimits