state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
R : Type u
inst✝ : AddGroupWithOne R
⊢ ↑↑2 = ↑2 | /-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Gabriel Ebner
-/
import Mathlib.Init.Data.Nat.Lemmas
import Mathlib.Data.Int.Cast.Defs
import Mathlib.Algebra.Group.Basic
#align_import data.int.cast.basic from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
/-!
# Cast of integers (additional theorems)
This file proves additional properties about the *canonical* homomorphism from
the integers into an additive group with a one (`Int.cast`).
There is also `Data.Int.Cast.Lemmas`,
which includes lemmas stated in terms of algebraic homomorphisms,
and results involving the order structure of `ℤ`.
By contrast, this file's only import beyond `Data.Int.Cast.Defs` is `Algebra.Group.Basic`.
-/
universe u
namespace Nat
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast]
theorem cast_sub {m n} (h : m ≤ n) : ((n - m : ℕ) : R) = n - m :=
eq_sub_of_add_eq <| by rw [← cast_add, Nat.sub_add_cancel h]
#align nat.cast_sub Nat.cast_subₓ
-- `HasLiftT` appeared in the type signature
@[simp, norm_cast]
theorem cast_pred : ∀ {n}, 0 < n → ((n - 1 : ℕ) : R) = n - 1
| 0, h => by cases h
| n + 1, _ => by rw [cast_succ, add_sub_cancel]; rfl
#align nat.cast_pred Nat.cast_pred
end Nat
open Nat
namespace Int
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast squash]
theorem cast_negSucc (n : ℕ) : (-[n+1] : R) = -(n + 1 : ℕ) :=
AddGroupWithOne.intCast_negSucc n
#align int.cast_neg_succ_of_nat Int.cast_negSuccₓ
-- expected `n` to be implicit, and `HasLiftT`
@[simp, norm_cast]
theorem cast_zero : ((0 : ℤ) : R) = 0 :=
(AddGroupWithOne.intCast_ofNat 0).trans Nat.cast_zero
#align int.cast_zero Int.cast_zeroₓ
-- type had `HasLiftT`
@[simp high, nolint simpNF, norm_cast] -- this lemma competes with `Int.ofNat_eq_cast` to come later
theorem cast_ofNat (n : ℕ) : ((n : ℤ) : R) = n :=
AddGroupWithOne.intCast_ofNat _
#align int.cast_coe_nat Int.cast_ofNatₓ
-- expected `n` to be implicit, and `HasLiftT`
#align int.cast_of_nat Int.cast_ofNatₓ
-- See note [no_index around OfNat.ofNat]
@[simp, norm_cast]
theorem int_cast_ofNat (n : ℕ) [n.AtLeastTwo] :
((no_index (OfNat.ofNat n) : ℤ) : R) = OfNat.ofNat n := by
simpa only [OfNat.ofNat] using AddGroupWithOne.intCast_ofNat (R := R) n
@[simp, norm_cast]
theorem cast_one : ((1 : ℤ) : R) = 1 := by
erw [cast_ofNat, Nat.cast_one]
#align int.cast_one Int.cast_oneₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_neg : ∀ n, ((-n : ℤ) : R) = -n
| (0 : ℕ) => by erw [cast_zero, neg_zero]
| (n + 1 : ℕ) => by erw [cast_ofNat, cast_negSucc]
| -[n+1] => by erw [cast_ofNat, cast_negSucc, neg_neg]
#align int.cast_neg Int.cast_negₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_subNatNat (m n) : ((Int.subNatNat m n : ℤ) : R) = m - n := by
unfold subNatNat
cases e : n - m
· simp only [ofNat_eq_coe]
simp [e, Nat.le_of_sub_eq_zero e]
· rw [cast_negSucc, Nat.add_one, ← e, Nat.cast_sub <| _root_.le_of_lt <| Nat.lt_of_sub_eq_succ e,
neg_sub]
#align int.cast_sub_nat_nat Int.cast_subNatNatₓ
-- type had `HasLiftT`
#align int.neg_of_nat_eq Int.negOfNat_eq
@[simp]
theorem cast_negOfNat (n : ℕ) : ((negOfNat n : ℤ) : R) = -n := by simp [Int.cast_neg, negOfNat_eq]
#align int.cast_neg_of_nat Int.cast_negOfNat
@[simp, norm_cast]
theorem cast_add : ∀ m n, ((m + n : ℤ) : R) = m + n
| (m : ℕ), (n : ℕ) => by simp [-Int.natCast_add, ← Int.ofNat_add]
| (m : ℕ), -[n+1] => by erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_add_neg]
| -[m+1], (n : ℕ) => by
erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_iff_eq_add, add_assoc,
eq_neg_add_iff_add_eq, ← Nat.cast_add, ← Nat.cast_add, Nat.add_comm]
| -[m+1], -[n+1] =>
show (-[m + n + 1+1] : R) = _ by
rw [cast_negSucc, cast_negSucc, cast_negSucc, ← neg_add_rev, ← Nat.cast_add,
Nat.add_right_comm m n 1, Nat.add_assoc, Nat.add_comm]
#align int.cast_add Int.cast_addₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_sub (m n) : ((m - n : ℤ) : R) = m - n := by
simp [Int.sub_eq_add_neg, sub_eq_add_neg, Int.cast_neg, Int.cast_add]
#align int.cast_sub Int.cast_subₓ
-- type had `HasLiftT`
section deprecated
set_option linter.deprecated false
@[norm_cast, deprecated]
theorem ofNat_bit0 (n : ℕ) : (↑(bit0 n) : ℤ) = bit0 ↑n :=
rfl
#align int.coe_nat_bit0 Int.ofNat_bit0
@[norm_cast, deprecated]
theorem ofNat_bit1 (n : ℕ) : (↑(bit1 n) : ℤ) = bit1 ↑n :=
rfl
#align int.coe_nat_bit1 Int.ofNat_bit1
@[norm_cast, deprecated]
theorem cast_bit0 (n : ℤ) : ((bit0 n : ℤ) : R) = bit0 (n : R) :=
Int.cast_add _ _
#align int.cast_bit0 Int.cast_bit0
@[norm_cast, deprecated]
theorem cast_bit1 (n : ℤ) : ((bit1 n : ℤ) : R) = bit1 (n : R) :=
by rw [bit1, Int.cast_add, Int.cast_one, cast_bit0]; rfl
#align int.cast_bit1 Int.cast_bit1
end deprecated
theorem cast_two : ((2 : ℤ) : R) = 2 :=
show (((2 : ℕ) : ℤ) : R) = ((2 : ℕ) : R) by | rw [cast_ofNat, Nat.cast_ofNat] | theorem cast_two : ((2 : ℤ) : R) = 2 :=
show (((2 : ℕ) : ℤ) : R) = ((2 : ℕ) : R) by | Mathlib.Data.Int.Cast.Basic.153_0.3MsWc9B5PAFbTbn | theorem cast_two : ((2 : ℤ) : R) = 2 | Mathlib_Data_Int_Cast_Basic |
R : Type u
inst✝ : AddGroupWithOne R
⊢ ↑↑3 = ↑3 | /-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Gabriel Ebner
-/
import Mathlib.Init.Data.Nat.Lemmas
import Mathlib.Data.Int.Cast.Defs
import Mathlib.Algebra.Group.Basic
#align_import data.int.cast.basic from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
/-!
# Cast of integers (additional theorems)
This file proves additional properties about the *canonical* homomorphism from
the integers into an additive group with a one (`Int.cast`).
There is also `Data.Int.Cast.Lemmas`,
which includes lemmas stated in terms of algebraic homomorphisms,
and results involving the order structure of `ℤ`.
By contrast, this file's only import beyond `Data.Int.Cast.Defs` is `Algebra.Group.Basic`.
-/
universe u
namespace Nat
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast]
theorem cast_sub {m n} (h : m ≤ n) : ((n - m : ℕ) : R) = n - m :=
eq_sub_of_add_eq <| by rw [← cast_add, Nat.sub_add_cancel h]
#align nat.cast_sub Nat.cast_subₓ
-- `HasLiftT` appeared in the type signature
@[simp, norm_cast]
theorem cast_pred : ∀ {n}, 0 < n → ((n - 1 : ℕ) : R) = n - 1
| 0, h => by cases h
| n + 1, _ => by rw [cast_succ, add_sub_cancel]; rfl
#align nat.cast_pred Nat.cast_pred
end Nat
open Nat
namespace Int
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast squash]
theorem cast_negSucc (n : ℕ) : (-[n+1] : R) = -(n + 1 : ℕ) :=
AddGroupWithOne.intCast_negSucc n
#align int.cast_neg_succ_of_nat Int.cast_negSuccₓ
-- expected `n` to be implicit, and `HasLiftT`
@[simp, norm_cast]
theorem cast_zero : ((0 : ℤ) : R) = 0 :=
(AddGroupWithOne.intCast_ofNat 0).trans Nat.cast_zero
#align int.cast_zero Int.cast_zeroₓ
-- type had `HasLiftT`
@[simp high, nolint simpNF, norm_cast] -- this lemma competes with `Int.ofNat_eq_cast` to come later
theorem cast_ofNat (n : ℕ) : ((n : ℤ) : R) = n :=
AddGroupWithOne.intCast_ofNat _
#align int.cast_coe_nat Int.cast_ofNatₓ
-- expected `n` to be implicit, and `HasLiftT`
#align int.cast_of_nat Int.cast_ofNatₓ
-- See note [no_index around OfNat.ofNat]
@[simp, norm_cast]
theorem int_cast_ofNat (n : ℕ) [n.AtLeastTwo] :
((no_index (OfNat.ofNat n) : ℤ) : R) = OfNat.ofNat n := by
simpa only [OfNat.ofNat] using AddGroupWithOne.intCast_ofNat (R := R) n
@[simp, norm_cast]
theorem cast_one : ((1 : ℤ) : R) = 1 := by
erw [cast_ofNat, Nat.cast_one]
#align int.cast_one Int.cast_oneₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_neg : ∀ n, ((-n : ℤ) : R) = -n
| (0 : ℕ) => by erw [cast_zero, neg_zero]
| (n + 1 : ℕ) => by erw [cast_ofNat, cast_negSucc]
| -[n+1] => by erw [cast_ofNat, cast_negSucc, neg_neg]
#align int.cast_neg Int.cast_negₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_subNatNat (m n) : ((Int.subNatNat m n : ℤ) : R) = m - n := by
unfold subNatNat
cases e : n - m
· simp only [ofNat_eq_coe]
simp [e, Nat.le_of_sub_eq_zero e]
· rw [cast_negSucc, Nat.add_one, ← e, Nat.cast_sub <| _root_.le_of_lt <| Nat.lt_of_sub_eq_succ e,
neg_sub]
#align int.cast_sub_nat_nat Int.cast_subNatNatₓ
-- type had `HasLiftT`
#align int.neg_of_nat_eq Int.negOfNat_eq
@[simp]
theorem cast_negOfNat (n : ℕ) : ((negOfNat n : ℤ) : R) = -n := by simp [Int.cast_neg, negOfNat_eq]
#align int.cast_neg_of_nat Int.cast_negOfNat
@[simp, norm_cast]
theorem cast_add : ∀ m n, ((m + n : ℤ) : R) = m + n
| (m : ℕ), (n : ℕ) => by simp [-Int.natCast_add, ← Int.ofNat_add]
| (m : ℕ), -[n+1] => by erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_add_neg]
| -[m+1], (n : ℕ) => by
erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_iff_eq_add, add_assoc,
eq_neg_add_iff_add_eq, ← Nat.cast_add, ← Nat.cast_add, Nat.add_comm]
| -[m+1], -[n+1] =>
show (-[m + n + 1+1] : R) = _ by
rw [cast_negSucc, cast_negSucc, cast_negSucc, ← neg_add_rev, ← Nat.cast_add,
Nat.add_right_comm m n 1, Nat.add_assoc, Nat.add_comm]
#align int.cast_add Int.cast_addₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_sub (m n) : ((m - n : ℤ) : R) = m - n := by
simp [Int.sub_eq_add_neg, sub_eq_add_neg, Int.cast_neg, Int.cast_add]
#align int.cast_sub Int.cast_subₓ
-- type had `HasLiftT`
section deprecated
set_option linter.deprecated false
@[norm_cast, deprecated]
theorem ofNat_bit0 (n : ℕ) : (↑(bit0 n) : ℤ) = bit0 ↑n :=
rfl
#align int.coe_nat_bit0 Int.ofNat_bit0
@[norm_cast, deprecated]
theorem ofNat_bit1 (n : ℕ) : (↑(bit1 n) : ℤ) = bit1 ↑n :=
rfl
#align int.coe_nat_bit1 Int.ofNat_bit1
@[norm_cast, deprecated]
theorem cast_bit0 (n : ℤ) : ((bit0 n : ℤ) : R) = bit0 (n : R) :=
Int.cast_add _ _
#align int.cast_bit0 Int.cast_bit0
@[norm_cast, deprecated]
theorem cast_bit1 (n : ℤ) : ((bit1 n : ℤ) : R) = bit1 (n : R) :=
by rw [bit1, Int.cast_add, Int.cast_one, cast_bit0]; rfl
#align int.cast_bit1 Int.cast_bit1
end deprecated
theorem cast_two : ((2 : ℤ) : R) = 2 :=
show (((2 : ℕ) : ℤ) : R) = ((2 : ℕ) : R) by rw [cast_ofNat, Nat.cast_ofNat]
#align int.cast_two Int.cast_two
theorem cast_three : ((3 : ℤ) : R) = 3 :=
show (((3 : ℕ) : ℤ) : R) = ((3 : ℕ) : R) by | rw [cast_ofNat, Nat.cast_ofNat] | theorem cast_three : ((3 : ℤ) : R) = 3 :=
show (((3 : ℕ) : ℤ) : R) = ((3 : ℕ) : R) by | Mathlib.Data.Int.Cast.Basic.157_0.3MsWc9B5PAFbTbn | theorem cast_three : ((3 : ℤ) : R) = 3 | Mathlib_Data_Int_Cast_Basic |
R : Type u
inst✝ : AddGroupWithOne R
⊢ ↑↑4 = ↑4 | /-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Gabriel Ebner
-/
import Mathlib.Init.Data.Nat.Lemmas
import Mathlib.Data.Int.Cast.Defs
import Mathlib.Algebra.Group.Basic
#align_import data.int.cast.basic from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
/-!
# Cast of integers (additional theorems)
This file proves additional properties about the *canonical* homomorphism from
the integers into an additive group with a one (`Int.cast`).
There is also `Data.Int.Cast.Lemmas`,
which includes lemmas stated in terms of algebraic homomorphisms,
and results involving the order structure of `ℤ`.
By contrast, this file's only import beyond `Data.Int.Cast.Defs` is `Algebra.Group.Basic`.
-/
universe u
namespace Nat
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast]
theorem cast_sub {m n} (h : m ≤ n) : ((n - m : ℕ) : R) = n - m :=
eq_sub_of_add_eq <| by rw [← cast_add, Nat.sub_add_cancel h]
#align nat.cast_sub Nat.cast_subₓ
-- `HasLiftT` appeared in the type signature
@[simp, norm_cast]
theorem cast_pred : ∀ {n}, 0 < n → ((n - 1 : ℕ) : R) = n - 1
| 0, h => by cases h
| n + 1, _ => by rw [cast_succ, add_sub_cancel]; rfl
#align nat.cast_pred Nat.cast_pred
end Nat
open Nat
namespace Int
variable {R : Type u} [AddGroupWithOne R]
@[simp, norm_cast squash]
theorem cast_negSucc (n : ℕ) : (-[n+1] : R) = -(n + 1 : ℕ) :=
AddGroupWithOne.intCast_negSucc n
#align int.cast_neg_succ_of_nat Int.cast_negSuccₓ
-- expected `n` to be implicit, and `HasLiftT`
@[simp, norm_cast]
theorem cast_zero : ((0 : ℤ) : R) = 0 :=
(AddGroupWithOne.intCast_ofNat 0).trans Nat.cast_zero
#align int.cast_zero Int.cast_zeroₓ
-- type had `HasLiftT`
@[simp high, nolint simpNF, norm_cast] -- this lemma competes with `Int.ofNat_eq_cast` to come later
theorem cast_ofNat (n : ℕ) : ((n : ℤ) : R) = n :=
AddGroupWithOne.intCast_ofNat _
#align int.cast_coe_nat Int.cast_ofNatₓ
-- expected `n` to be implicit, and `HasLiftT`
#align int.cast_of_nat Int.cast_ofNatₓ
-- See note [no_index around OfNat.ofNat]
@[simp, norm_cast]
theorem int_cast_ofNat (n : ℕ) [n.AtLeastTwo] :
((no_index (OfNat.ofNat n) : ℤ) : R) = OfNat.ofNat n := by
simpa only [OfNat.ofNat] using AddGroupWithOne.intCast_ofNat (R := R) n
@[simp, norm_cast]
theorem cast_one : ((1 : ℤ) : R) = 1 := by
erw [cast_ofNat, Nat.cast_one]
#align int.cast_one Int.cast_oneₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_neg : ∀ n, ((-n : ℤ) : R) = -n
| (0 : ℕ) => by erw [cast_zero, neg_zero]
| (n + 1 : ℕ) => by erw [cast_ofNat, cast_negSucc]
| -[n+1] => by erw [cast_ofNat, cast_negSucc, neg_neg]
#align int.cast_neg Int.cast_negₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_subNatNat (m n) : ((Int.subNatNat m n : ℤ) : R) = m - n := by
unfold subNatNat
cases e : n - m
· simp only [ofNat_eq_coe]
simp [e, Nat.le_of_sub_eq_zero e]
· rw [cast_negSucc, Nat.add_one, ← e, Nat.cast_sub <| _root_.le_of_lt <| Nat.lt_of_sub_eq_succ e,
neg_sub]
#align int.cast_sub_nat_nat Int.cast_subNatNatₓ
-- type had `HasLiftT`
#align int.neg_of_nat_eq Int.negOfNat_eq
@[simp]
theorem cast_negOfNat (n : ℕ) : ((negOfNat n : ℤ) : R) = -n := by simp [Int.cast_neg, negOfNat_eq]
#align int.cast_neg_of_nat Int.cast_negOfNat
@[simp, norm_cast]
theorem cast_add : ∀ m n, ((m + n : ℤ) : R) = m + n
| (m : ℕ), (n : ℕ) => by simp [-Int.natCast_add, ← Int.ofNat_add]
| (m : ℕ), -[n+1] => by erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_add_neg]
| -[m+1], (n : ℕ) => by
erw [cast_subNatNat, cast_ofNat, cast_negSucc, sub_eq_iff_eq_add, add_assoc,
eq_neg_add_iff_add_eq, ← Nat.cast_add, ← Nat.cast_add, Nat.add_comm]
| -[m+1], -[n+1] =>
show (-[m + n + 1+1] : R) = _ by
rw [cast_negSucc, cast_negSucc, cast_negSucc, ← neg_add_rev, ← Nat.cast_add,
Nat.add_right_comm m n 1, Nat.add_assoc, Nat.add_comm]
#align int.cast_add Int.cast_addₓ
-- type had `HasLiftT`
@[simp, norm_cast]
theorem cast_sub (m n) : ((m - n : ℤ) : R) = m - n := by
simp [Int.sub_eq_add_neg, sub_eq_add_neg, Int.cast_neg, Int.cast_add]
#align int.cast_sub Int.cast_subₓ
-- type had `HasLiftT`
section deprecated
set_option linter.deprecated false
@[norm_cast, deprecated]
theorem ofNat_bit0 (n : ℕ) : (↑(bit0 n) : ℤ) = bit0 ↑n :=
rfl
#align int.coe_nat_bit0 Int.ofNat_bit0
@[norm_cast, deprecated]
theorem ofNat_bit1 (n : ℕ) : (↑(bit1 n) : ℤ) = bit1 ↑n :=
rfl
#align int.coe_nat_bit1 Int.ofNat_bit1
@[norm_cast, deprecated]
theorem cast_bit0 (n : ℤ) : ((bit0 n : ℤ) : R) = bit0 (n : R) :=
Int.cast_add _ _
#align int.cast_bit0 Int.cast_bit0
@[norm_cast, deprecated]
theorem cast_bit1 (n : ℤ) : ((bit1 n : ℤ) : R) = bit1 (n : R) :=
by rw [bit1, Int.cast_add, Int.cast_one, cast_bit0]; rfl
#align int.cast_bit1 Int.cast_bit1
end deprecated
theorem cast_two : ((2 : ℤ) : R) = 2 :=
show (((2 : ℕ) : ℤ) : R) = ((2 : ℕ) : R) by rw [cast_ofNat, Nat.cast_ofNat]
#align int.cast_two Int.cast_two
theorem cast_three : ((3 : ℤ) : R) = 3 :=
show (((3 : ℕ) : ℤ) : R) = ((3 : ℕ) : R) by rw [cast_ofNat, Nat.cast_ofNat]
#align int.cast_three Int.cast_three
theorem cast_four : ((4 : ℤ) : R) = 4 :=
show (((4 : ℕ) : ℤ) : R) = ((4 : ℕ) : R) by | rw [cast_ofNat, Nat.cast_ofNat] | theorem cast_four : ((4 : ℤ) : R) = 4 :=
show (((4 : ℕ) : ℤ) : R) = ((4 : ℕ) : R) by | Mathlib.Data.Int.Cast.Basic.161_0.3MsWc9B5PAFbTbn | theorem cast_four : ((4 : ℤ) : R) = 4 | Mathlib_Data_Int_Cast_Basic |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
⊢ Rat.Nonneg (a /. b) ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
| generalize ha : a /. b = x | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
x : ℚ
ha : a /. b = x
⊢ Rat.Nonneg x ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; | cases' x with n₁ d₁ h₁ c₁ | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = mk' n₁ d₁
⊢ Rat.Nonneg (mk' n₁ d₁) ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; | rw [num_den'] at ha | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
⊢ Rat.Nonneg (mk' n₁ d₁) ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
| simp only [Rat.Nonneg] | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
⊢ 0 ≤ n₁ ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
| have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁) | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
⊢ 0 ≤ n₁ ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
| have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
⊢ 0 ≤ n₁ ↔ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
| constructor | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'.mp
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
⊢ 0 ≤ n₁ → 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> | intro h₂ | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'.mpr
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
⊢ 0 ≤ a → 0 ≤ n₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> | intro h₂ | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'.mp
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ n₁
⊢ 0 ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· | apply nonneg_of_mul_nonneg_left _ d0 | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ n₁
⊢ 0 ≤ a * ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
| rw [this] | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ n₁
⊢ 0 ≤ n₁ * b | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
| exact mul_nonneg h₂ (le_of_lt h) | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
case mk'.mpr
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ a
⊢ 0 ≤ n₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· | apply nonneg_of_mul_nonneg_left _ h | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· | Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ a
⊢ 0 ≤ n₁ * b | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
| rw [← this] | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c : ℚ
a b : ℤ
h : 0 < b
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
c₁ : Nat.Coprime (Int.natAbs n₁) d₁
ha : a /. b = n₁ /. ↑d₁
d0 : ↑0 < ↑d₁
this : a * ↑d₁ = n₁ * b
h₂ : 0 ≤ a
⊢ 0 ≤ a * ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
| exact mul_nonneg h₂ (Int.ofNat_zero_le _) | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
| Mathlib.Data.Rat.Order.38_0.NTjR6KCugNscheB | @[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ + n₂ /. ↑d₂) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
| have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁) | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
| Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ + n₂ /. ↑d₂) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
| have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂) | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
| Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ + n₂ /. ↑d₂) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
| simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff] | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
| Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
⊢ 0 ≤ n₁ → 0 ≤ n₂ → 0 ≤ n₁ * ↑d₂ + n₂ * ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
| intro n₁0 n₂0 | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
| Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₁ * ↑d₂ + n₂ * ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
| apply add_nonneg | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
| Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₁ * ↑d₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> | apply mul_nonneg | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₂ * ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> | apply mul_nonneg | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha.ha
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | first |assumption|apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha.ha
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | assumption | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | first |assumption|apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | assumption | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case ha.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption| | apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption| | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb.ha
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | first |assumption|apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb.ha
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ n₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | assumption | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | first |assumption|apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | assumption | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first | | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
case hb.hb
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
n₁0 : 0 ≤ n₁
n₂0 : 0 ≤ n₂
⊢ 0 ≤ ↑d₁ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption| | apply Int.ofNat_zero_le | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption| | Mathlib.Data.Rat.Order.53_0.NTjR6KCugNscheB | protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ * (n₂ /. ↑d₂)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
| have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁) | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
| Mathlib.Data.Rat.Order.64_0.NTjR6KCugNscheB | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ * (n₂ /. ↑d₂)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
| have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂) | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
| Mathlib.Data.Rat.Order.64_0.NTjR6KCugNscheB | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
⊢ Rat.Nonneg (n₁ /. ↑d₁) → Rat.Nonneg (n₂ /. ↑d₂) → Rat.Nonneg (n₁ /. ↑d₁ * (n₂ /. ↑d₂)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
| rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)] | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
| Mathlib.Data.Rat.Order.64_0.NTjR6KCugNscheB | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
n₁ : ℤ
d₁ : ℕ
h₁ : d₁ ≠ 0
n₂ : ℤ
d₂ : ℕ
h₂ : d₂ ≠ 0
d₁0 : 0 < ↑d₁
d₂0 : 0 < ↑d₂
⊢ 0 ≤ n₁ → 0 ≤ n₂ → 0 ≤ n₁ * n₂ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
| apply mul_nonneg | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
| Mathlib.Data.Rat.Order.64_0.NTjR6KCugNscheB | protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) | Mathlib_Data_Rat_Order |
a✝ b c a : ℚ
n : ℤ
d : ℕ
h : d ≠ 0
⊢ Rat.Nonneg (n /. ↑d) → Rat.Nonneg (-(n /. ↑d)) → n /. ↑d = 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
| have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h) | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
| Mathlib.Data.Rat.Order.74_0.NTjR6KCugNscheB | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 | Mathlib_Data_Rat_Order |
a✝ b c a : ℚ
n : ℤ
d : ℕ
h : d ≠ 0
d0 : 0 < ↑d
⊢ Rat.Nonneg (n /. ↑d) → Rat.Nonneg (-(n /. ↑d)) → n /. ↑d = 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
| rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm] | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
| Mathlib.Data.Rat.Order.74_0.NTjR6KCugNscheB | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 | Mathlib_Data_Rat_Order |
a✝ b c a : ℚ
n : ℤ
d : ℕ
h : d ≠ 0
d0 : 0 < ↑d
⊢ 0 ≤ n → n ≤ 0 → n = 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
| exact fun h₁ h₂ => le_antisymm h₂ h₁ | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
| Mathlib.Data.Rat.Order.74_0.NTjR6KCugNscheB | protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ Rat.Nonneg a ∨ Rat.Nonneg (-a) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
| cases' a with n | protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
| Mathlib.Data.Rat.Order.82_0.NTjR6KCugNscheB | protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) | Mathlib_Data_Rat_Order |
case mk'
b c : ℚ
n : ℤ
den✝ : ℕ
den_nz✝ : den✝ ≠ 0
reduced✝ : Nat.Coprime (Int.natAbs n) den✝
⊢ Rat.Nonneg (mk' n den✝) ∨ Rat.Nonneg (-mk' n den✝) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; | exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n) | protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; | Mathlib.Data.Rat.Order.82_0.NTjR6KCugNscheB | protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ Decidable (Rat.Nonneg a) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
| cases a | instance decidableNonneg : Decidable (Rat.Nonneg a) := by
| Mathlib.Data.Rat.Order.86_0.NTjR6KCugNscheB | instance decidableNonneg : Decidable (Rat.Nonneg a) | Mathlib_Data_Rat_Order |
case mk'
b c : ℚ
num✝ : ℤ
den✝ : ℕ
den_nz✝ : den✝ ≠ 0
reduced✝ : Nat.Coprime (Int.natAbs num✝) den✝
⊢ Decidable (Rat.Nonneg (mk' num✝ den✝)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; | unfold Rat.Nonneg | instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; | Mathlib.Data.Rat.Order.86_0.NTjR6KCugNscheB | instance decidableNonneg : Decidable (Rat.Nonneg a) | Mathlib_Data_Rat_Order |
case mk'
b c : ℚ
num✝ : ℤ
den✝ : ℕ
den_nz✝ : den✝ ≠ 0
reduced✝ : Nat.Coprime (Int.natAbs num✝) den✝
⊢ Decidable (0 ≤ (mk' num✝ den✝).num) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; | infer_instance | instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; | Mathlib.Data.Rat.Order.86_0.NTjR6KCugNscheB | instance decidableNonneg : Decidable (Rat.Nonneg a) | Mathlib_Data_Rat_Order |
a✝ b c : ℚ
C : ℚ → Sort u
a : ℚ
H : (n : ℤ) → (d : ℕ) → (nz : d ≠ 0) → (red : Nat.Coprime (Int.natAbs n) d) → C (mk' n d)
n : ℤ
d : ℕ
h : 0 < d
h' : Nat.Coprime (Int.natAbs n) d
⊢ C (n /. ↑d) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
| rw [← mk_eq_divInt _ _ h.ne' h'] | /-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
| Mathlib.Data.Rat.Order.97_0.NTjR6KCugNscheB | /-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a | Mathlib_Data_Rat_Order |
a✝ b c : ℚ
C : ℚ → Sort u
a : ℚ
H : (n : ℤ) → (d : ℕ) → (nz : d ≠ 0) → (red : Nat.Coprime (Int.natAbs n) d) → C (mk' n d)
n : ℤ
d : ℕ
h : 0 < d
h' : Nat.Coprime (Int.natAbs n) d
⊢ C (mk' n d) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
| exact H n d h.ne' _ | /-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
| Mathlib.Data.Rat.Order.97_0.NTjR6KCugNscheB | /-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
⊢ mk' na da ≤ mk' nb db ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
| change Rat.blt _ _ = false ↔ _ | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
⊢ Rat.blt (mk' nb db) (mk' na da) = false ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
| unfold Rat.blt | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
⊢ (if (decide ((mk' nb db).num < 0) && decide (0 ≤ (mk' na da).num)) = true then true
else
if (mk' nb db).num = 0 then decide (0 < (mk' na da).num)
else
if (decide (0 < (mk' nb db).num) && decide ((mk' na da).num ≤ 0)) = true then false
else decide ((mk' nb db).num * ↑(mk' na da).den < (mk' na da).num * ↑(mk' nb db).den)) =
false ↔
Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
| simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
⊢ (if nb < 0 ∧ 0 ≤ na then False else if nb = 0 then na ≤ 0 else (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da) ↔
Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
| split_ifs with h h' | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ False ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· | rw [Rat.sub_def] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ False ↔
Rat.Nonneg
(normalize ((mk' nb db).num * ↑(mk' na da).den - (mk' na da).num * ↑(mk' nb db).den)
((mk' nb db).den * (mk' na da).den)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
| simp only [Rat.Nonneg, false_iff, not_le] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ (normalize (nb * ↑da - na * ↑db) (db * da)).num < 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
| simp only [normalize_eq] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) < 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
| apply Int.ediv_neg' | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Ha
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ nb * ↑da - na * ↑db < 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· | rw [sub_neg] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Ha
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ nb * ↑da < na * ↑db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
| apply lt_of_lt_of_le | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Ha.a
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ nb * ↑da < ?pos.Ha.b✝ | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· | apply mul_neg_of_neg_of_pos h.1 | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Ha.a
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
| rwa [Nat.cast_pos, pos_iff_ne_zero] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Ha.a
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 ≤ na * ↑db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· | apply mul_nonneg h.2 (Nat.cast_nonneg _) | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Hb
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· | simp only [Nat.cast_pos] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Hb
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
| apply Nat.gcd_pos_of_pos_right | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Hb.npos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < db * da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
| apply mul_pos | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Hb.npos.ha
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | rwa [pos_iff_ne_zero] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos.Hb.npos.hb
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : nb < 0 ∧ 0 ≤ na
⊢ 0 < da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | rwa [pos_iff_ne_zero] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : nb = 0
⊢ na ≤ 0 ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· | simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h' | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case pos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : nb = 0
⊢ na ≤ 0 ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
| simp [h', Rat.Nonneg] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
⊢ (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da ↔ Rat.Nonneg (mk' nb db - mk' na da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· | simp [Rat.Nonneg, Rat.sub_def, normalize_eq] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
⊢ (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da ↔
0 ≤ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
| refine ⟨fun H => ?_, fun H _ => ?_⟩ | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
⊢ 0 ≤ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· | refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _) | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
⊢ 0 ≤ nb * ↑da - na * ↑db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
| rw [sub_nonneg] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
| push_neg at h | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
| obtain hb|hb := Ne.lt_or_lt h' | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inl
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : nb < 0
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· | apply H | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inl
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : nb < 0
⊢ 0 < nb → 0 < na | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
| intro H' | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inl
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : nb < 0
H' : 0 < nb
⊢ 0 < na | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
| exact (hb.trans H').false.elim | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inr
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : 0 < nb
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· | obtain ha|ha := le_or_lt na 0 | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inr.inl
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha✝ : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : 0 < nb
ha : na ≤ 0
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· | apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _) | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inr.inl
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha✝ : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : 0 < nb
ha : na ≤ 0
⊢ 0 ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
| exact mul_nonneg hb.le (Nat.cast_nonneg _) | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_1.inr.inr
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha✝ : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb✝ : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h' : ¬nb = 0
H : (0 < nb → 0 < na) → na * ↑db ≤ nb * ↑da
h : nb < 0 → na < 0
hb : 0 < nb
ha : 0 < na
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· | exact H (fun _ => ha) | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
H : 0 ≤ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da))
x✝ : 0 < nb → 0 < na
⊢ na * ↑db ≤ nb * ↑da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· | rw [← sub_nonneg] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
H : 0 ≤ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da))
x✝ : 0 < nb → 0 < na
⊢ 0 ≤ nb * ↑da - na * ↑db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
| contrapose! H | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ (nb * ↑da - na * ↑db) / ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) < 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
| apply Int.ediv_neg' H | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ 0 < ↑(Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da)) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
| simp only [Nat.cast_pos] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ 0 < Nat.gcd (Int.natAbs (nb * ↑da - na * ↑db)) (db * da) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
| apply Nat.gcd_pos_of_pos_right | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2.npos
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ 0 < db * da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
| apply mul_pos | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
| Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2.npos.ha
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ 0 < db | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | rwa [pos_iff_ne_zero] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
case neg.refine_2.npos.hb
a✝ b✝ c a b : ℚ
na : ℤ
da : ℕ
ha : da ≠ 0
hared : Nat.Coprime (Int.natAbs na) da
nb : ℤ
db : ℕ
hb : db ≠ 0
hbred : Nat.Coprime (Int.natAbs nb) db
h : ¬(nb < 0 ∧ 0 ≤ na)
h' : ¬nb = 0
x✝ : 0 < nb → 0 < na
H : nb * ↑da - na * ↑db < 0
⊢ 0 < da | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | rwa [pos_iff_ne_zero] | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> | Mathlib.Data.Rat.Order.109_0.NTjR6KCugNscheB | protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) | Mathlib_Data_Rat_Order |
a✝ b✝ c✝ : ℚ
a b c d : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ a /. b ≤ c /. d ↔ a * d ≤ c * b | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
| rw [Rat.le_iff_Nonneg] | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
| Mathlib.Data.Rat.Order.151_0.NTjR6KCugNscheB | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b | Mathlib_Data_Rat_Order |
a✝ b✝ c✝ : ℚ
a b c d : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ Rat.Nonneg (c /. d - a /. b) ↔ a * d ≤ c * b | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
| show Rat.Nonneg _ ↔ _ | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
| Mathlib.Data.Rat.Order.151_0.NTjR6KCugNscheB | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b | Mathlib_Data_Rat_Order |
a✝ b✝ c✝ : ℚ
a b c d : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ Rat.Nonneg (c /. d - a /. b) ↔ a * d ≤ c * b | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
| rw [← sub_nonneg] | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
| Mathlib.Data.Rat.Order.151_0.NTjR6KCugNscheB | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b | Mathlib_Data_Rat_Order |
a✝ b✝ c✝ : ℚ
a b c d : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ Rat.Nonneg (c /. d - a /. b) ↔ 0 ≤ c * b - a * d | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
| simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0] | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
| Mathlib.Data.Rat.Order.151_0.NTjR6KCugNscheB | protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ a ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
| rw [Rat.le_iff_Nonneg] | protected theorem le_refl : a ≤ a := by
| Mathlib.Data.Rat.Order.159_0.NTjR6KCugNscheB | protected theorem le_refl : a ≤ a | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ Rat.Nonneg (a - a) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
| show Rat.Nonneg (a - a) | protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
| Mathlib.Data.Rat.Order.159_0.NTjR6KCugNscheB | protected theorem le_refl : a ≤ a | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ Rat.Nonneg (a - a) | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
| rw [sub_self] | protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
| Mathlib.Data.Rat.Order.159_0.NTjR6KCugNscheB | protected theorem le_refl : a ≤ a | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ Rat.Nonneg 0 | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
rw [sub_self]
| exact le_refl (0 : ℤ) | protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
rw [sub_self]
| Mathlib.Data.Rat.Order.159_0.NTjR6KCugNscheB | protected theorem le_refl : a ≤ a | Mathlib_Data_Rat_Order |
a b c : ℚ
⊢ a ≤ b ∨ b ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
rw [sub_self]
exact le_refl (0 : ℤ)
#align rat.le_refl Rat.le_refl
protected theorem le_total : a ≤ b ∨ b ≤ a := by
| have := Rat.nonneg_total (b - a) | protected theorem le_total : a ≤ b ∨ b ≤ a := by
| Mathlib.Data.Rat.Order.166_0.NTjR6KCugNscheB | protected theorem le_total : a ≤ b ∨ b ≤ a | Mathlib_Data_Rat_Order |
a b c : ℚ
this : Rat.Nonneg (b - a) ∨ Rat.Nonneg (-(b - a))
⊢ a ≤ b ∨ b ≤ a | /-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Algebra.Order.Field.Defs
import Mathlib.Data.Rat.Basic
import Mathlib.Data.Int.Cast.Lemmas
#align_import data.rat.order from "leanprover-community/mathlib"@"a59dad53320b73ef180174aae867addd707ef00e"
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace Rat
variable (a b c : ℚ)
open Rat
/-- A rational number is called nonnegative if its numerator is nonnegative. -/
protected def Nonneg (r : ℚ) : Prop :=
0 ≤ r.num
#align rat.nonneg Rat.Nonneg
@[simp]
theorem divInt_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : (a /. b).Nonneg ↔ 0 ≤ a := by
generalize ha : a /. b = x; cases' x with n₁ d₁ h₁ c₁; rw [num_den'] at ha
simp only [Rat.Nonneg]
have d0 := Int.ofNat_lt.2 (Nat.pos_of_ne_zero h₁)
have := (divInt_eq_iff (ne_of_gt h) (ne_of_gt d0)).1 ha
constructor <;> intro h₂
· apply nonneg_of_mul_nonneg_left _ d0
rw [this]
exact mul_nonneg h₂ (le_of_lt h)
· apply nonneg_of_mul_nonneg_left _ h
rw [← this]
exact mul_nonneg h₂ (Int.ofNat_zero_le _)
#align rat.mk_nonneg Rat.divInt_nonneg
protected theorem nonneg_add {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a + b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
simp only [d₁0, d₂0, h₁, h₂, mul_pos, divInt_nonneg, add_def'', Ne.def,
Nat.cast_eq_zero, not_false_iff]
intro n₁0 n₂0
apply add_nonneg <;> apply mul_nonneg <;> · first |assumption|apply Int.ofNat_zero_le
#align rat.nonneg_add Rat.nonneg_add
protected theorem nonneg_mul {a b} : Rat.Nonneg a → Rat.Nonneg b → Rat.Nonneg (a * b) :=
numDenCasesOn' a fun n₁ d₁ h₁ =>
numDenCasesOn' b fun n₂ d₂ h₂ => by
have d₁0 : 0 < (d₁ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₁)
have d₂0 : 0 < (d₂ : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h₂)
rw [mul_def' d₁0.ne.symm d₂0.ne.symm, divInt_nonneg _ d₁0, divInt_nonneg _ d₂0,
divInt_nonneg _ (mul_pos d₁0 d₂0)]
apply mul_nonneg
#align rat.nonneg_mul Rat.nonneg_mul
protected theorem nonneg_antisymm {a} : Rat.Nonneg a → Rat.Nonneg (-a) → a = 0 :=
numDenCasesOn' a fun n d h => by
have d0 : 0 < (d : ℤ) := Int.coe_nat_pos.2 (Nat.pos_of_ne_zero h)
rw [divInt_nonneg _ d0, neg_def, divInt_nonneg _ d0, Right.nonneg_neg_iff,
divInt_eq_zero d0.ne.symm]
exact fun h₁ h₂ => le_antisymm h₂ h₁
#align rat.nonneg_antisymm Rat.nonneg_antisymm
protected theorem nonneg_total : Rat.Nonneg a ∨ Rat.Nonneg (-a) := by
cases' a with n; exact Or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
#align rat.nonneg_total Rat.nonneg_total
instance decidableNonneg : Decidable (Rat.Nonneg a) := by
cases a; unfold Rat.Nonneg; infer_instance
#align rat.decidable_nonneg Rat.decidableNonneg
-- Porting note: Now `Std` defines `≤` on `Rat`.
-- This is the old mathlib3 definition.
/-- Relation `a ≤ b` on `ℚ` defined as `a ≤ b ↔ Rat.Nonneg (b - a)`. Use `a ≤ b` instead of
`Rat.le a b`. -/
protected def le' (a b : ℚ) := Rat.Nonneg (b - a)
#align rat.le Rat.le'
/-- Define a (dependent) function or prove `∀ r : ℚ, p r` by dealing with rational
numbers of the form `mk' n d` with `d ≠ 0`. -/
-- Porting note: TODO move
@[elab_as_elim]
def numDenCasesOn''.{u} {C : ℚ → Sort u} (a : ℚ)
(H : ∀ (n : ℤ) (d : ℕ) (nz red), C (mk' n d nz red)) :
C a :=
numDenCasesOn a fun n d h h' => by
rw [← mk_eq_divInt _ _ h.ne' h']
exact H n d h.ne' _
-- Porting note: TODO can this be shortened?
protected theorem le_iff_Nonneg (a b : ℚ) : a ≤ b ↔ Rat.Nonneg (b - a) :=
numDenCasesOn'' a fun na da ha hared =>
numDenCasesOn'' b fun nb db hb hbred => by
change Rat.blt _ _ = false ↔ _
unfold Rat.blt
simp only [Bool.and_eq_true, decide_eq_true_eq, Bool.ite_eq_false_distrib,
decide_eq_false_iff_not, not_lt, ite_eq_left_iff, not_and, not_le]
split_ifs with h h'
· rw [Rat.sub_def]
simp only [Rat.Nonneg, false_iff, not_le]
simp only [normalize_eq]
apply Int.ediv_neg'
· rw [sub_neg]
apply lt_of_lt_of_le
· apply mul_neg_of_neg_of_pos h.1
rwa [Nat.cast_pos, pos_iff_ne_zero]
· apply mul_nonneg h.2 (Nat.cast_nonneg _)
· simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
· simp only [divInt_ofNat, ← zero_iff_num_zero, mkRat_eq_zero hb] at h'
simp [h', Rat.Nonneg]
· simp [Rat.Nonneg, Rat.sub_def, normalize_eq]
refine ⟨fun H => ?_, fun H _ => ?_⟩
· refine Int.ediv_nonneg ?_ (Nat.cast_nonneg _)
rw [sub_nonneg]
push_neg at h
obtain hb|hb := Ne.lt_or_lt h'
· apply H
intro H'
exact (hb.trans H').false.elim
· obtain ha|ha := le_or_lt na 0
· apply le_trans <| mul_nonpos_of_nonpos_of_nonneg ha (Nat.cast_nonneg _)
exact mul_nonneg hb.le (Nat.cast_nonneg _)
· exact H (fun _ => ha)
· rw [← sub_nonneg]
contrapose! H
apply Int.ediv_neg' H
simp only [Nat.cast_pos]
apply Nat.gcd_pos_of_pos_right
apply mul_pos <;> rwa [pos_iff_ne_zero]
protected theorem le_def {a b c d : ℤ} (b0 : 0 < b) (d0 : 0 < d) :
a /. b ≤ c /. d ↔ a * d ≤ c * b := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg _ ↔ _
rw [← sub_nonneg]
simp [sub_eq_add_neg, ne_of_gt b0, ne_of_gt d0, mul_pos d0 b0]
#align rat.le_def Rat.le_def
protected theorem le_refl : a ≤ a := by
rw [Rat.le_iff_Nonneg]
show Rat.Nonneg (a - a)
rw [sub_self]
exact le_refl (0 : ℤ)
#align rat.le_refl Rat.le_refl
protected theorem le_total : a ≤ b ∨ b ≤ a := by
have := Rat.nonneg_total (b - a)
| rw [Rat.le_iff_Nonneg, Rat.le_iff_Nonneg] | protected theorem le_total : a ≤ b ∨ b ≤ a := by
have := Rat.nonneg_total (b - a)
| Mathlib.Data.Rat.Order.166_0.NTjR6KCugNscheB | protected theorem le_total : a ≤ b ∨ b ≤ a | Mathlib_Data_Rat_Order |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.