state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
m n : ℕ ⊢ 1 < ack (m + 1 + 1) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by
rw [ack_succ_succ]
theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by
Mathlib.Computability.Ackermann.117_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left
Mathlib_Computability_Ackermann
m n : ℕ ⊢ 1 < ack (m + 1) (ack (m + 1 + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ]
apply one_lt_ack_succ_left
theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ]
Mathlib.Computability.Ackermann.117_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left
Mathlib_Computability_Ackermann
n : ℕ ⊢ 1 < ack 0 (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by
simp
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by
Mathlib.Computability.Ackermann.127_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right
Mathlib_Computability_Ackermann
m n : ℕ ⊢ 1 < ack (m + 1) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by
rw [ack_succ_succ]
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by
Mathlib.Computability.Ackermann.127_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right
Mathlib_Computability_Ackermann
m n : ℕ ⊢ 1 < ack m (ack (m + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ]
cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ]
Mathlib.Computability.Ackermann.127_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right
Mathlib_Computability_Ackermann
case intro m n h✝ : ℕ h : ack (m + 1) n = succ h✝ ⊢ 1 < ack m (ack (m + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h
rw [h]
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h
Mathlib.Computability.Ackermann.127_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right
Mathlib_Computability_Ackermann
case intro m n h✝ : ℕ h : ack (m + 1) n = succ h✝ ⊢ 1 < ack m (succ h✝)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h]
apply one_lt_ack_succ_right
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h]
Mathlib.Computability.Ackermann.127_0.nk1BuTevlQj1gCN
theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right
Mathlib_Computability_Ackermann
n₁ n₂ : ℕ h : n₁ < n₂ ⊢ ack 0 n₁ < ack 0 n₂
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by
simpa using h
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
m n : ℕ _h : 0 < n + 1 ⊢ ack (m + 1) 0 < ack (m + 1) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by
rw [ack_succ_zero, ack_succ_succ]
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
m n : ℕ _h : 0 < n + 1 ⊢ ack m 1 < ack m (ack (m + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ]
exact ack_strictMono_right _ (one_lt_ack_succ_left m n)
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ]
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ ack (m + 1) (n₁ + 1) < ack (m + 1) (n₂ + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by
rw [ack_succ_succ, ack_succ_succ]
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ ack m (ack (m + 1) n₁) < ack m (ack (m + 1) n₂)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ]
apply ack_strictMono_right _ (ack_strictMono_right _ _)
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ]
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ n₁ < n₂
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _)
rwa [add_lt_add_iff_right] at h
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _)
Mathlib.Computability.Ackermann.136_0.nk1BuTevlQj1gCN
theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x)
Mathlib_Computability_Ackermann
n : ℕ ⊢ 0 + n < ack 0 n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by
simp
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by
Mathlib.Computability.Ackermann.175_0.nk1BuTevlQj1gCN
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2)
Mathlib_Computability_Ackermann
m : ℕ ⊢ m + 1 + 0 < ack (m + 1) 0
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by
simpa using add_lt_ack m 1
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by
Mathlib.Computability.Ackermann.175_0.nk1BuTevlQj1gCN
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2)
Mathlib_Computability_Ackermann
m n : ℕ ⊢ m + 1 + n + 1 ≤ m + (m + n + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by
linarith
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by
Mathlib.Computability.Ackermann.175_0.nk1BuTevlQj1gCN
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2)
Mathlib_Computability_Ackermann
m n : ℕ ⊢ m + n + 2 = succ (m + 1 + n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by
rw [succ_eq_add_one]
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by
Mathlib.Computability.Ackermann.175_0.nk1BuTevlQj1gCN
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2)
Mathlib_Computability_Ackermann
m n : ℕ ⊢ m + n + 2 = m + 1 + n + 1
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one];
ring_nf
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one];
Mathlib.Computability.Ackermann.175_0.nk1BuTevlQj1gCN
theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2)
Mathlib_Computability_Ackermann
m : ℕ _h : 0 < m + 1 ⊢ ack 0 0 < ack (m + 1) 0
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by
simpa using one_lt_ack_succ_right m 0
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m n : ℕ h : 0 < m + 1 ⊢ ack 0 (n + 1) < ack (m + 1) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by
rw [ack_zero, ack_succ_succ]
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m n : ℕ h : 0 < m + 1 ⊢ n + 1 + 1 < ack m (ack (m + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ]
apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _)
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ]
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m n : ℕ h : 0 < m + 1 ⊢ n + 1 + 1 ≤ m + (m + 1 + n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _)
linarith
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _)
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m₁ m₂ : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack (m₁ + 1) 0 < ack (m₂ + 1) 0
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by
simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h)
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m₁ m₂ n : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack (m₁ + 1) (n + 1) < ack (m₂ + 1) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by
rw [ack_succ_succ, ack_succ_succ]
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m₁ m₂ n : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack m₁ (ack (m₁ + 1) n) < ack m₂ (ack (m₂ + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ]
exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h)
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ]
Mathlib.Computability.Ackermann.202_0.nk1BuTevlQj1gCN
private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y)
Mathlib_Computability_Ackermann
m n : ℕ ⊢ ack m (n + 1) ≤ ack (m + 1) n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by
cases' n with n n
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by
Mathlib.Computability.Ackermann.253_0.nk1BuTevlQj1gCN
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n
Mathlib_Computability_Ackermann
case zero m : ℕ ⊢ ack m (zero + 1) ≤ ack (m + 1) zero
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n ·
simp
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n ·
Mathlib.Computability.Ackermann.253_0.nk1BuTevlQj1gCN
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n
Mathlib_Computability_Ackermann
case succ m n : ℕ ⊢ ack m (succ n + 1) ≤ ack (m + 1) (succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp ·
rw [ack_succ_succ, succ_eq_add_one]
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp ·
Mathlib.Computability.Ackermann.253_0.nk1BuTevlQj1gCN
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n
Mathlib_Computability_Ackermann
case succ m n : ℕ ⊢ ack m (n + 1 + 1) ≤ ack m (ack (m + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one]
apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n)
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one]
Mathlib.Computability.Ackermann.253_0.nk1BuTevlQj1gCN
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n
Mathlib_Computability_Ackermann
m n : ℕ ⊢ n + 1 + 1 ≤ m + 1 + n + 1
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n)
linarith
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n)
Mathlib.Computability.Ackermann.253_0.nk1BuTevlQj1gCN
theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n
Mathlib_Computability_Ackermann
n : ℕ ⊢ n ^ 2 ≤ 2 ^ (n + 1) - 3
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by
induction' n with k hk
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case zero ⊢ zero ^ 2 ≤ 2 ^ (zero + 1) - 3
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk ·
norm_num
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ k : ℕ hk : k ^ 2 ≤ 2 ^ (k + 1) - 3 ⊢ succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num ·
cases' k with k k
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.zero hk : zero ^ 2 ≤ 2 ^ (zero + 1) - 3 ⊢ succ zero ^ 2 ≤ 2 ^ (succ zero + 1) - 3
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k ·
norm_num
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ succ (succ k) ^ 2 ≤ 2 ^ (succ (succ k) + 1) - 3
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num ·
rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc]
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ (k + 1) ^ 2 + (2 * (k + 1) * 1 + 1 ^ 2) ≤ 2 ^ (k + 2) - 3 + 2 ^ (k + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] ·
apply Nat.add_le_add hk
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) * 1 + 1 ^ 2 ≤ 2 ^ (k + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk
norm_num
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) + 1 ≤ 2 ^ (k + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num
apply succ_le_of_lt
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) < 2 ^ (k + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt
rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)]
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ k + 1 < 2 ^ (k + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)]
apply lt_two_pow
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)]
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 3 ≤ 2 ^ (k + 2)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow ·
rw [Nat.pow_succ, Nat.pow_succ]
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow ·
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 3 ≤ 2 ^ k * 2 * 2
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ]
linarith [one_le_pow k 2 zero_lt_two]
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ]
Mathlib.Computability.Ackermann.262_0.nk1BuTevlQj1gCN
private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3
Mathlib_Computability_Ackermann
n : ℕ ⊢ (ack 0 n + 1) ^ 2 ≤ ack (0 + 3) n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by
simpa using sq_le_two_pow_add_one_minus_three (n + 2)
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m : ℕ ⊢ (ack (m + 1) 0 + 1) ^ 2 ≤ ack (m + 1 + 3) 0
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by
rw [ack_succ_zero, ack_succ_zero]
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m : ℕ ⊢ (ack m 1 + 1) ^ 2 ≤ ack (m + 3) 1
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero]
apply ack_add_one_sq_lt_ack_add_three
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero]
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m n : ℕ ⊢ (ack (m + 1) (n + 1) + 1) ^ 2 ≤ ack (m + 1 + 3) (n + 1)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by
rw [ack_succ_succ, ack_succ_succ]
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m n : ℕ ⊢ (ack m (ack (m + 1) n) + 1) ^ 2 ≤ ack (m + 3) (ack (m + 3 + 1) n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ]
apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _)
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ]
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m n : ℕ ⊢ m + 1 ≤ m + 3 + 1
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _)
linarith
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _)
Mathlib.Computability.Ackermann.277_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith
Mathlib_Computability_Ackermann
m n : ℕ ⊢ m ≤ m + 2
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by
linarith
theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by
Mathlib.Computability.Ackermann.297_0.nk1BuTevlQj1gCN
theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n
Mathlib_Computability_Ackermann
f : ℕ → ℕ hf : Nat.Primrec f ⊢ ∃ m, ∀ (n : ℕ), f n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by
induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case zero f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun x => 0) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: ·
exact ⟨0, ack_pos 0⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case succ f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), succ n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: ·
refine' ⟨1, fun n => _⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case succ f : ℕ → ℕ n : ℕ ⊢ succ n < ack 1 n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩
rw [succ_eq_one_add]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case succ f : ℕ → ℕ n : ℕ ⊢ 1 + n < ack 1 n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add]
apply add_lt_ack
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case left f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).1) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: ·
refine' ⟨0, fun n => _⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case left f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).1) n < ack 0 n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩
rw [ack_zero, lt_succ_iff]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case left f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).1) n ≤ n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff]
exact unpair_left_le n
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case right f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).2) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: ·
refine' ⟨0, fun n => _⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case right f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).2) n < ack 0 n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩
rw [ack_zero, lt_succ_iff]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case right f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).2) n ≤ n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff]
exact unpair_right_le n
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n case comp f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n case prec f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n
all_goals cases' IHf with a ha; cases' IHg with b hb
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
cases' IHf with a ha
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
cases' IHg with b hb
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case comp f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
cases' IHf with a ha
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case comp.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
cases' IHg with b hb
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case prec f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
cases' IHf with a ha
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case prec.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
cases' IHg with b hb
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha;
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: ·
refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n n : ℕ ⊢ max (f n) (g n) ≤ ack (max a b) n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩
rw [max_ack_left]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n n : ℕ ⊢ max (f n) (g n) ≤ max (ack a n) (ack b n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left]
exact max_le_max (ha n).le (hb n).le
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case comp.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: ·
exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case prec.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first.
have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by
intro m n
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n.
induction' n with n IH
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case zero f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m : ℕ ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) zero < ack (max a b + 9) (m + zero)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. ·
apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m : ℕ ⊢ max a b < max a b + 9
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _)
linarith
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _)
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case succ f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) (succ n) < ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`.
simp only [ge_iff_le]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case succ f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ g (pair m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) < ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le]
apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality.
cases' lt_or_le _ m with h₁ h₁
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : ?m.147498 < m ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ ·
rw [max_eq_left h₁.le]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m ⊢ ack (b + 4) m ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m ⊢ 4 ≤ 9
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by
norm_num
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _)
rw [max_eq_right h₁]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _)
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4) (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`.
apply (ack_pair_lt _ _ _).le.trans
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality.
cases' lt_or_le _ n with h₂ h₂
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : ?m.147966 < n ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ ·
rw [max_eq_left h₂.le, add_assoc]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ ·
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n ⊢ ack (b + (4 + 4)) n ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n ⊢ 4 + 4 ≤ 9
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by
norm_num
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _)
rw [max_eq_right h₂]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _)
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation.
apply (ack_strictMono_right _ IH).le.trans
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (ack (max a b + 9) (m + n)) ≤ ack (max a b + 9) (m + succ n)
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans
rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc]
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + (4 + 4)) (ack (max a b + 8 + 1) (m + n)) ≤ ack (max a b + 8) (ack (max a b + 8 + 1) (m + n))
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc]
exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl)
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc]
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
case prec.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n this : ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple.
exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple.
Mathlib.Computability.Ackermann.312_0.nk1BuTevlQj1gCN
/-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n
Mathlib_Computability_Ackermann
h : Nat.Primrec fun n => ack n n ⊢ False
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩ #align exists_lt_ack_of_nat_primrec exists_lt_ack_of_nat_primrec theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by
cases' exists_lt_ack_of_nat_primrec h with m hm
theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by
Mathlib.Computability.Ackermann.381_0.nk1BuTevlQj1gCN
theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n
Mathlib_Computability_Ackermann
case intro h : Nat.Primrec fun n => ack n n m : ℕ hm : ∀ (n : ℕ), ack n n < ack m n ⊢ False
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩ #align exists_lt_ack_of_nat_primrec exists_lt_ack_of_nat_primrec theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by cases' exists_lt_ack_of_nat_primrec h with m hm
exact (hm m).false
theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by cases' exists_lt_ack_of_nat_primrec h with m hm
Mathlib.Computability.Ackermann.381_0.nk1BuTevlQj1gCN
theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n
Mathlib_Computability_Ackermann
⊢ ¬Primrec fun n => ack n n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩ #align exists_lt_ack_of_nat_primrec exists_lt_ack_of_nat_primrec theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by cases' exists_lt_ack_of_nat_primrec h with m hm exact (hm m).false #align not_nat_primrec_ack_self not_nat_primrec_ack_self theorem not_primrec_ack_self : ¬Primrec fun n => ack n n := by
rw [Primrec.nat_iff]
theorem not_primrec_ack_self : ¬Primrec fun n => ack n n := by
Mathlib.Computability.Ackermann.386_0.nk1BuTevlQj1gCN
theorem not_primrec_ack_self : ¬Primrec fun n => ack n n
Mathlib_Computability_Ackermann
⊢ ¬Nat.Primrec fun n => ack n n
/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import Mathlib.Computability.Primrec import Mathlib.Tactic.Ring import Mathlib.Tactic.Linarith #align_import computability.ackermann from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383" /-! # Ackermann function In this file, we define the two-argument Ackermann function `ack`. Despite having a recursive definition, we show that this isn't a primitive recursive function. ## Main results - `exists_lt_ack_of_nat_primrec`: any primitive recursive function is pointwise bounded above by `ack m` for some `m`. - `not_primrec₂_ack`: the two-argument Ackermann function is not primitive recursive. ## Proof approach We very broadly adapt the proof idea from https://www.planetmath.org/ackermannfunctionisnotprimitiverecursive. Namely, we prove that for any primitive recursive `f : ℕ → ℕ`, there exists `m` such that `f n < ack m n` for all `n`. This then implies that `fun n => ack n n` can't be primitive recursive, and so neither can `ack`. We aren't able to use the same bounds as in that proof though, since our approach of using pairing functions differs from their approach of using multivariate functions. The important bounds we show during the main inductive proof (`exists_lt_ack_of_nat_primrec`) are the following. Assuming `∀ n, f n < ack a n` and `∀ n, g n < ack b n`, we have: - `∀ n, pair (f n) (g n) < ack (max a b + 3) n`. - `∀ n, g (f n) < ack (max a b + 2) n`. - `∀ n, Nat.rec (f n.unpair.1) (fun (y IH : ℕ) => g (pair n.unpair.1 (pair y IH))) n.unpair.2 < ack (max a b + 9) n`. The last one is evidently the hardest. Using `unpair_add_le`, we reduce it to the more manageable - `∀ m n, rec (f m) (fun (y IH : ℕ) => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)`. We then prove this by induction on `n`. Our proof crucially depends on `ack_pair_lt`, which is applied twice, giving us a constant of `4 + 4`. The rest of the proof consists of simpler bounds which bump up our constant to `9`. -/ open Nat /-- The two-argument Ackermann function, defined so that - `ack 0 n = n + 1` - `ack (m + 1) 0 = ack m 1` - `ack (m + 1) (n + 1) = ack m (ack (m + 1) n)`. This is of interest as both a fast-growing function, and as an example of a recursive function that isn't primitive recursive. -/ def ack : ℕ → ℕ → ℕ | 0, n => n + 1 | m + 1, 0 => ack m 1 | m + 1, n + 1 => ack m (ack (m + 1) n) termination_by ack m n => (m, n) #align ack ack @[simp] theorem ack_zero (n : ℕ) : ack 0 n = n + 1 := by rw [ack] #align ack_zero ack_zero @[simp] theorem ack_succ_zero (m : ℕ) : ack (m + 1) 0 = ack m 1 := by rw [ack] #align ack_succ_zero ack_succ_zero @[simp] theorem ack_succ_succ (m n : ℕ) : ack (m + 1) (n + 1) = ack m (ack (m + 1) n) := by rw [ack] #align ack_succ_succ ack_succ_succ @[simp] theorem ack_one (n : ℕ) : ack 1 n = n + 2 := by induction' n with n IH · rfl · simp [IH] #align ack_one ack_one @[simp] theorem ack_two (n : ℕ) : ack 2 n = 2 * n + 3 := by induction' n with n IH · rfl · simpa [mul_succ] #align ack_two ack_two -- Porting note: re-written to get rid of ack_three_aux @[simp] theorem ack_three (n : ℕ) : ack 3 n = 2 ^ (n + 3) - 3 := by induction' n with n IH · rfl · rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num apply H.trans simp [pow_le_pow_right (show 1 ≤ 2 by norm_num)] #align ack_three ack_three theorem ack_pos : ∀ m n, 0 < ack m n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply ack_pos | m + 1, n + 1 => by rw [ack_succ_succ] apply ack_pos #align ack_pos ack_pos theorem one_lt_ack_succ_left : ∀ m n, 1 < ack (m + 1) n | 0, n => by simp | m + 1, 0 => by rw [ack_succ_zero] apply one_lt_ack_succ_left | m + 1, n + 1 => by rw [ack_succ_succ] apply one_lt_ack_succ_left #align one_lt_ack_succ_left one_lt_ack_succ_left theorem one_lt_ack_succ_right : ∀ m n, 1 < ack m (n + 1) | 0, n => by simp | m + 1, n => by rw [ack_succ_succ] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h rw [h] apply one_lt_ack_succ_right #align one_lt_ack_succ_right one_lt_ack_succ_right theorem ack_strictMono_right : ∀ m, StrictMono (ack m) | 0, n₁, n₂, h => by simpa using h | m + 1, 0, n + 1, _h => by rw [ack_succ_zero, ack_succ_succ] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) | m + 1, n₁ + 1, n₂ + 1, h => by rw [ack_succ_succ, ack_succ_succ] apply ack_strictMono_right _ (ack_strictMono_right _ _) rwa [add_lt_add_iff_right] at h termination_by ack_strictMono_right m x y h => (m, x) #align ack_strict_mono_right ack_strictMono_right theorem ack_mono_right (m : ℕ) : Monotone (ack m) := (ack_strictMono_right m).monotone #align ack_mono_right ack_mono_right theorem ack_injective_right (m : ℕ) : Function.Injective (ack m) := (ack_strictMono_right m).injective #align ack_injective_right ack_injective_right @[simp] theorem ack_lt_iff_right {m n₁ n₂ : ℕ} : ack m n₁ < ack m n₂ ↔ n₁ < n₂ := (ack_strictMono_right m).lt_iff_lt #align ack_lt_iff_right ack_lt_iff_right @[simp] theorem ack_le_iff_right {m n₁ n₂ : ℕ} : ack m n₁ ≤ ack m n₂ ↔ n₁ ≤ n₂ := (ack_strictMono_right m).le_iff_le #align ack_le_iff_right ack_le_iff_right @[simp] theorem ack_inj_right {m n₁ n₂ : ℕ} : ack m n₁ = ack m n₂ ↔ n₁ = n₂ := (ack_injective_right m).eq_iff #align ack_inj_right ack_inj_right theorem max_ack_right (m n₁ n₂ : ℕ) : ack m (max n₁ n₂) = max (ack m n₁) (ack m n₂) := (ack_mono_right m).map_max #align max_ack_right max_ack_right theorem add_lt_ack : ∀ m n, m + n < ack m n | 0, n => by simp | m + 1, 0 => by simpa using add_lt_ack m 1 | m + 1, n + 1 => calc m + 1 + n + 1 ≤ m + (m + n + 2) := by linarith _ < ack m (m + n + 2) := add_lt_ack _ _ _ ≤ ack m (ack (m + 1) n) := ack_mono_right m <| le_of_eq_of_le (by rw [succ_eq_add_one]; ring_nf) <| succ_le_of_lt <| add_lt_ack (m + 1) n _ = ack (m + 1) (n + 1) := (ack_succ_succ m n).symm termination_by add_lt_ack m n => (m, n) #align add_lt_ack add_lt_ack theorem add_add_one_le_ack (m n : ℕ) : m + n + 1 ≤ ack m n := succ_le_of_lt (add_lt_ack m n) #align add_add_one_le_ack add_add_one_le_ack theorem lt_ack_left (m n : ℕ) : m < ack m n := (self_le_add_right m n).trans_lt <| add_lt_ack m n #align lt_ack_left lt_ack_left theorem lt_ack_right (m n : ℕ) : n < ack m n := (self_le_add_left n m).trans_lt <| add_lt_ack m n #align lt_ack_right lt_ack_right -- we reorder the arguments to appease the equation compiler private theorem ack_strict_mono_left' : ∀ {m₁ m₂} (n), m₁ < m₂ → ack m₁ n < ack m₂ n | m, 0, n => fun h => (not_lt_zero m h).elim | 0, m + 1, 0 => fun _h => by simpa using one_lt_ack_succ_right m 0 | 0, m + 1, n + 1 => fun h => by rw [ack_zero, ack_succ_succ] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) linarith | m₁ + 1, m₂ + 1, 0 => fun h => by simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) | m₁ + 1, m₂ + 1, n + 1 => fun h => by rw [ack_succ_succ, ack_succ_succ] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) termination_by ack_strict_mono_left' x y => (x, y) theorem ack_strictMono_left (n : ℕ) : StrictMono fun m => ack m n := fun _m₁ _m₂ => ack_strict_mono_left' n #align ack_strict_mono_left ack_strictMono_left theorem ack_mono_left (n : ℕ) : Monotone fun m => ack m n := (ack_strictMono_left n).monotone #align ack_mono_left ack_mono_left theorem ack_injective_left (n : ℕ) : Function.Injective fun m => ack m n := (ack_strictMono_left n).injective #align ack_injective_left ack_injective_left @[simp] theorem ack_lt_iff_left {m₁ m₂ n : ℕ} : ack m₁ n < ack m₂ n ↔ m₁ < m₂ := (ack_strictMono_left n).lt_iff_lt #align ack_lt_iff_left ack_lt_iff_left @[simp] theorem ack_le_iff_left {m₁ m₂ n : ℕ} : ack m₁ n ≤ ack m₂ n ↔ m₁ ≤ m₂ := (ack_strictMono_left n).le_iff_le #align ack_le_iff_left ack_le_iff_left @[simp] theorem ack_inj_left {m₁ m₂ n : ℕ} : ack m₁ n = ack m₂ n ↔ m₁ = m₂ := (ack_injective_left n).eq_iff #align ack_inj_left ack_inj_left theorem max_ack_left (m₁ m₂ n : ℕ) : ack (max m₁ m₂) n = max (ack m₁ n) (ack m₂ n) := (ack_mono_left n).map_max #align max_ack_left max_ack_left theorem ack_le_ack {m₁ m₂ n₁ n₂ : ℕ} (hm : m₁ ≤ m₂) (hn : n₁ ≤ n₂) : ack m₁ n₁ ≤ ack m₂ n₂ := (ack_mono_left n₁ hm).trans <| ack_mono_right m₂ hn #align ack_le_ack ack_le_ack theorem ack_succ_right_le_ack_succ_left (m n : ℕ) : ack m (n + 1) ≤ ack (m + 1) n := by cases' n with n n · simp · rw [ack_succ_succ, succ_eq_add_one] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) linarith #align ack_succ_right_le_ack_succ_left ack_succ_right_le_ack_succ_left -- All the inequalities from this point onwards are specific to the main proof. private theorem sq_le_two_pow_add_one_minus_three (n : ℕ) : n ^ 2 ≤ 2 ^ (n + 1) - 3 := by induction' n with k hk · norm_num · cases' k with k k · norm_num · rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] · apply Nat.add_le_add hk norm_num apply succ_le_of_lt rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] apply lt_two_pow · rw [Nat.pow_succ, Nat.pow_succ] linarith [one_le_pow k 2 zero_lt_two] theorem ack_add_one_sq_lt_ack_add_three : ∀ m n, (ack m n + 1) ^ 2 ≤ ack (m + 3) n | 0, n => by simpa using sq_le_two_pow_add_one_minus_three (n + 2) | m + 1, 0 => by rw [ack_succ_zero, ack_succ_zero] apply ack_add_one_sq_lt_ack_add_three | m + 1, n + 1 => by rw [ack_succ_succ, ack_succ_succ] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) linarith #align ack_add_one_sq_lt_ack_add_three ack_add_one_sq_lt_ack_add_three theorem ack_ack_lt_ack_max_add_two (m n k : ℕ) : ack m (ack n k) < ack (max m n + 2) k := calc ack m (ack n k) ≤ ack (max m n) (ack n k) := ack_mono_left _ (le_max_left _ _) _ < ack (max m n) (ack (max m n + 1) k) := ack_strictMono_right _ <| ack_strictMono_left k <| lt_succ_of_le <| le_max_right m n _ = ack (max m n + 1) (k + 1) := (ack_succ_succ _ _).symm _ ≤ ack (max m n + 2) k := ack_succ_right_le_ack_succ_left _ _ #align ack_ack_lt_ack_max_add_two ack_ack_lt_ack_max_add_two theorem ack_add_one_sq_lt_ack_add_four (m n : ℕ) : ack m ((n + 1) ^ 2) < ack (m + 4) n := calc ack m ((n + 1) ^ 2) < ack m ((ack m n + 1) ^ 2) := ack_strictMono_right m <| Nat.pow_lt_pow_left (succ_lt_succ <| lt_ack_right m n) two_ne_zero _ ≤ ack m (ack (m + 3) n) := ack_mono_right m <| ack_add_one_sq_lt_ack_add_three m n _ ≤ ack (m + 2) (ack (m + 3) n) := ack_mono_left _ <| by linarith _ = ack (m + 3) (n + 1) := (ack_succ_succ _ n).symm _ ≤ ack (m + 4) n := ack_succ_right_le_ack_succ_left _ n #align ack_add_one_sq_lt_ack_add_four ack_add_one_sq_lt_ack_add_four theorem ack_pair_lt (m n k : ℕ) : ack m (pair n k) < ack (m + 4) (max n k) := (ack_strictMono_right m <| pair_lt_max_add_one_sq n k).trans <| ack_add_one_sq_lt_ack_add_four _ _ #align ack_mkpair_lt ack_pair_lt /-- If `f` is primitive recursive, there exists `m` such that `f n < ack m n` for all `n`. -/ theorem exists_lt_ack_of_nat_primrec {f : ℕ → ℕ} (hf : Nat.Primrec f) : ∃ m, ∀ n, f n < ack m n := by induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg -- Zero function: · exact ⟨0, ack_pos 0⟩ -- Successor function: · refine' ⟨1, fun n => _⟩ rw [succ_eq_one_add] apply add_lt_ack -- Left projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_left_le n -- Right projection: · refine' ⟨0, fun n => _⟩ rw [ack_zero, lt_succ_iff] exact unpair_right_le n all_goals cases' IHf with a ha; cases' IHg with b hb -- Pairing: · refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (Nat.pow_le_pow_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ rw [max_ack_left] exact max_le_max (ha n).le (hb n).le -- Composition: · exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: · -- We prove this simpler inequality first. have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n -- We induct on n. induction' n with n IH -- The base case is easy. · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans -- If n is the maximum, we get a very weak inequality. cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩ #align exists_lt_ack_of_nat_primrec exists_lt_ack_of_nat_primrec theorem not_nat_primrec_ack_self : ¬Nat.Primrec fun n => ack n n := fun h => by cases' exists_lt_ack_of_nat_primrec h with m hm exact (hm m).false #align not_nat_primrec_ack_self not_nat_primrec_ack_self theorem not_primrec_ack_self : ¬Primrec fun n => ack n n := by rw [Primrec.nat_iff]
exact not_nat_primrec_ack_self
theorem not_primrec_ack_self : ¬Primrec fun n => ack n n := by rw [Primrec.nat_iff]
Mathlib.Computability.Ackermann.386_0.nk1BuTevlQj1gCN
theorem not_primrec_ack_self : ¬Primrec fun n => ack n n
Mathlib_Computability_Ackermann
α : Type u e : Encoding α ⊢ Function.Injective e.encode
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by
refine' fun _ _ h => Option.some_injective _ _
theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by
Mathlib.Computability.Encoding.42_0.rxHMk1LMmv2SbJ8
theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode
Mathlib_Computability_Encoding
α : Type u e : Encoding α x✝¹ x✝ : α h : encode e x✝¹ = encode e x✝ ⊢ some x✝¹ = some x✝
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _
rw [← e.decode_encode, ← e.decode_encode, h]
theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _
Mathlib.Computability.Encoding.42_0.rxHMk1LMmv2SbJ8
theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode
Mathlib_Computability_Encoding
⊢ Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding