state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
⊢ ∀ (x : Γ'), x ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by
intro
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
x✝ : Γ' ⊢ x✝ ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro;
cases_type* Γ' Bool
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro;
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case blank ⊢ blank ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case bit.false ⊢ bit false ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case bit.true ⊢ bit true ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case bra ⊢ bra ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case ket ⊢ ket ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
case comma ⊢ comma ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
decide
instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;>
Mathlib.Computability.Encoding.67_0.rxHMk1LMmv2SbJ8
instance Γ'.fintype : Fintype Γ'
Mathlib_Computability_Encoding
⊢ ∀ (n : PosNum), decodePosNum (encodePosNum n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by
intro n
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
n : PosNum ⊢ decodePosNum (encodePosNum n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n
induction' n with m hm m hm
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case one ⊢ decodePosNum (encodePosNum PosNum.one) = PosNum.one
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
unfold encodePosNum decodePosNum
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ decodePosNum (encodePosNum (PosNum.bit1 m)) = PosNum.bit1 m
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
unfold encodePosNum decodePosNum
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case bit0 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ decodePosNum (encodePosNum (PosNum.bit0 m)) = PosNum.bit0 m
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
unfold encodePosNum decodePosNum
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;>
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case one ⊢ (if [] = [] then PosNum.one else PosNum.bit1 (decodePosNum [])) = PosNum.one
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum ·
rfl
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum ·
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 (decodePosNum (encodePosNum m))) = PosNum.bit1 m
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl ·
rw [hm]
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl ·
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 m) = PosNum.bit1 m
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm]
exact if_neg (encodePosNum_nonempty m)
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm]
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
case bit0 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ PosNum.bit0 (decodePosNum (encodePosNum m)) = PosNum.bit0 m
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) ·
exact congr_arg PosNum.bit0 hm
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) ·
Mathlib.Computability.Encoding.133_0.rxHMk1LMmv2SbJ8
theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n
Mathlib_Computability_Encoding
⊢ ∀ (n : Num), decodeNum (encodeNum n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by
intro n
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
n : Num ⊢ decodeNum (encodeNum n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n
cases' n with n
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case zero ⊢ decodeNum (encodeNum Num.zero) = Num.zero
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;>
unfold encodeNum decodeNum
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;>
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case pos n : PosNum ⊢ decodeNum (encodeNum (Num.pos n)) = Num.pos n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;>
unfold encodeNum decodeNum
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;>
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case zero ⊢ (if (match Num.zero with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑(decodePosNum (match Num.zero with | Num.zero => [] | Num.pos n => encodePosNum n))) = Num.zero
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum ·
rfl
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum ·
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑(decodePosNum (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n))) = Num.pos n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl
rw [decode_encodePosNum n]
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑n) = Num.pos n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n]
rw [PosNum.cast_to_num]
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n]
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else Num.pos n) = Num.pos n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num]
exact if_neg (encodePosNum_nonempty n)
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num]
Mathlib.Computability.Encoding.142_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n
Mathlib_Computability_Encoding
⊢ ∀ (n : ℕ), decodeNat (encodeNat n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by
intro n
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
n : ℕ ⊢ decodeNat (encodeNat n) = n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n
conv_rhs => rw [← Num.to_of_nat n]
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
n : ℕ | n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
rw [← Num.to_of_nat n]
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
n : ℕ | n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
rw [← Num.to_of_nat n]
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
n : ℕ | n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
rw [← Num.to_of_nat n]
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs =>
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
n : ℕ ⊢ decodeNat (encodeNat n) = ↑↑n
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n]
exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n)
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n]
Mathlib.Computability.Encoding.151_0.rxHMk1LMmv2SbJ8
theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n
Mathlib_Computability_Encoding
x : ℕ ⊢ decodeNat (List.map sectionΓ'Bool ((fun x => List.map inclusionBoolΓ' (encodeNat x)) x)) = x
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead.
rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat]
/-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead.
Mathlib.Computability.Encoding.170_0.rxHMk1LMmv2SbJ8
/-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ
Mathlib_Computability_Encoding
α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ #α ≤ ℵ₀
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead. rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] #align computability.encoding_nat_Γ' Computability.encodingNatΓ' /-- A binary fin_encoding of ℕ in Γ'. -/ def finEncodingNatΓ' : FinEncoding ℕ := ⟨encodingNatΓ', Γ'.fintype⟩ #align computability.fin_encoding_nat_Γ' Computability.finEncodingNatΓ' /-- A unary encoding function of ℕ in bool. -/ def unaryEncodeNat : Nat → List Bool | 0 => [] | n + 1 => true :: unaryEncodeNat n #align computability.unary_encode_nat Computability.unaryEncodeNat /-- A unary decoding function from `List Bool` to ℕ. -/ def unaryDecodeNat : List Bool → Nat := List.length #align computability.unary_decode_nat Computability.unaryDecodeNat theorem unary_decode_encode_nat : ∀ n, unaryDecodeNat (unaryEncodeNat n) = n := fun n => Nat.rec rfl (fun (_m : ℕ) hm => (congr_arg Nat.succ hm.symm).symm) n #align computability.unary_decode_encode_nat Computability.unary_decode_encode_nat /-- A unary fin_encoding of ℕ. -/ def unaryFinEncodingNat : FinEncoding ℕ where Γ := Bool encode := unaryEncodeNat decode n := some (unaryDecodeNat n) decode_encode n := congr_arg _ (unary_decode_encode_nat n) ΓFin := Bool.fintype #align computability.unary_fin_encoding_nat Computability.unaryFinEncodingNat /-- An encoding function of bool in bool. -/ def encodeBool : Bool → List Bool := List.ret #align computability.encode_bool Computability.encodeBool /-- A decoding function from `List Bool` to bool. -/ def decodeBool : List Bool → Bool | b :: _ => b | _ => Inhabited.default #align computability.decode_bool Computability.decodeBool theorem decode_encodeBool : ∀ b, decodeBool (encodeBool b) = b := fun b => Bool.casesOn b rfl rfl #align computability.decode_encode_bool Computability.decode_encodeBool /-- A fin_encoding of bool in bool. -/ def finEncodingBoolBool : FinEncoding Bool where Γ := Bool encode := encodeBool decode x := some (decodeBool x) decode_encode x := congr_arg _ (decode_encodeBool x) ΓFin := Bool.fintype #align computability.fin_encoding_bool_bool Computability.finEncodingBoolBool instance inhabitedFinEncoding : Inhabited (FinEncoding Bool) := ⟨finEncodingBoolBool⟩ #align computability.inhabited_fin_encoding Computability.inhabitedFinEncoding instance inhabitedEncoding : Inhabited (Encoding Bool) := ⟨finEncodingBoolBool.toEncoding⟩ #align computability.inhabited_encoding Computability.inhabitedEncoding theorem Encoding.card_le_card_list {α : Type u} (e : Encoding.{u, v} α) : Cardinal.lift.{v} #α ≤ Cardinal.lift.{u} #(List e.Γ) := Cardinal.lift_mk_le'.2 ⟨⟨e.encode, e.encode_injective⟩⟩ #align computability.encoding.card_le_card_list Computability.Encoding.card_le_card_list theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by
refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _)
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by
Mathlib.Computability.Encoding.247_0.rxHMk1LMmv2SbJ8
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀
Mathlib_Computability_Encoding
α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ lift.{u, v} #(List e.Γ) ≤ lift.{v, u} ℵ₀
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead. rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] #align computability.encoding_nat_Γ' Computability.encodingNatΓ' /-- A binary fin_encoding of ℕ in Γ'. -/ def finEncodingNatΓ' : FinEncoding ℕ := ⟨encodingNatΓ', Γ'.fintype⟩ #align computability.fin_encoding_nat_Γ' Computability.finEncodingNatΓ' /-- A unary encoding function of ℕ in bool. -/ def unaryEncodeNat : Nat → List Bool | 0 => [] | n + 1 => true :: unaryEncodeNat n #align computability.unary_encode_nat Computability.unaryEncodeNat /-- A unary decoding function from `List Bool` to ℕ. -/ def unaryDecodeNat : List Bool → Nat := List.length #align computability.unary_decode_nat Computability.unaryDecodeNat theorem unary_decode_encode_nat : ∀ n, unaryDecodeNat (unaryEncodeNat n) = n := fun n => Nat.rec rfl (fun (_m : ℕ) hm => (congr_arg Nat.succ hm.symm).symm) n #align computability.unary_decode_encode_nat Computability.unary_decode_encode_nat /-- A unary fin_encoding of ℕ. -/ def unaryFinEncodingNat : FinEncoding ℕ where Γ := Bool encode := unaryEncodeNat decode n := some (unaryDecodeNat n) decode_encode n := congr_arg _ (unary_decode_encode_nat n) ΓFin := Bool.fintype #align computability.unary_fin_encoding_nat Computability.unaryFinEncodingNat /-- An encoding function of bool in bool. -/ def encodeBool : Bool → List Bool := List.ret #align computability.encode_bool Computability.encodeBool /-- A decoding function from `List Bool` to bool. -/ def decodeBool : List Bool → Bool | b :: _ => b | _ => Inhabited.default #align computability.decode_bool Computability.decodeBool theorem decode_encodeBool : ∀ b, decodeBool (encodeBool b) = b := fun b => Bool.casesOn b rfl rfl #align computability.decode_encode_bool Computability.decode_encodeBool /-- A fin_encoding of bool in bool. -/ def finEncodingBoolBool : FinEncoding Bool where Γ := Bool encode := encodeBool decode x := some (decodeBool x) decode_encode x := congr_arg _ (decode_encodeBool x) ΓFin := Bool.fintype #align computability.fin_encoding_bool_bool Computability.finEncodingBoolBool instance inhabitedFinEncoding : Inhabited (FinEncoding Bool) := ⟨finEncodingBoolBool⟩ #align computability.inhabited_fin_encoding Computability.inhabitedFinEncoding instance inhabitedEncoding : Inhabited (Encoding Bool) := ⟨finEncodingBoolBool.toEncoding⟩ #align computability.inhabited_encoding Computability.inhabitedEncoding theorem Encoding.card_le_card_list {α : Type u} (e : Encoding.{u, v} α) : Cardinal.lift.{v} #α ≤ Cardinal.lift.{u} #(List e.Γ) := Cardinal.lift_mk_le'.2 ⟨⟨e.encode, e.encode_injective⟩⟩ #align computability.encoding.card_le_card_list Computability.Encoding.card_le_card_list theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _)
simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0]
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _)
Mathlib.Computability.Encoding.247_0.rxHMk1LMmv2SbJ8
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀
Mathlib_Computability_Encoding
α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ #(List e.Γ) ≤ ℵ₀
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead. rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] #align computability.encoding_nat_Γ' Computability.encodingNatΓ' /-- A binary fin_encoding of ℕ in Γ'. -/ def finEncodingNatΓ' : FinEncoding ℕ := ⟨encodingNatΓ', Γ'.fintype⟩ #align computability.fin_encoding_nat_Γ' Computability.finEncodingNatΓ' /-- A unary encoding function of ℕ in bool. -/ def unaryEncodeNat : Nat → List Bool | 0 => [] | n + 1 => true :: unaryEncodeNat n #align computability.unary_encode_nat Computability.unaryEncodeNat /-- A unary decoding function from `List Bool` to ℕ. -/ def unaryDecodeNat : List Bool → Nat := List.length #align computability.unary_decode_nat Computability.unaryDecodeNat theorem unary_decode_encode_nat : ∀ n, unaryDecodeNat (unaryEncodeNat n) = n := fun n => Nat.rec rfl (fun (_m : ℕ) hm => (congr_arg Nat.succ hm.symm).symm) n #align computability.unary_decode_encode_nat Computability.unary_decode_encode_nat /-- A unary fin_encoding of ℕ. -/ def unaryFinEncodingNat : FinEncoding ℕ where Γ := Bool encode := unaryEncodeNat decode n := some (unaryDecodeNat n) decode_encode n := congr_arg _ (unary_decode_encode_nat n) ΓFin := Bool.fintype #align computability.unary_fin_encoding_nat Computability.unaryFinEncodingNat /-- An encoding function of bool in bool. -/ def encodeBool : Bool → List Bool := List.ret #align computability.encode_bool Computability.encodeBool /-- A decoding function from `List Bool` to bool. -/ def decodeBool : List Bool → Bool | b :: _ => b | _ => Inhabited.default #align computability.decode_bool Computability.decodeBool theorem decode_encodeBool : ∀ b, decodeBool (encodeBool b) = b := fun b => Bool.casesOn b rfl rfl #align computability.decode_encode_bool Computability.decode_encodeBool /-- A fin_encoding of bool in bool. -/ def finEncodingBoolBool : FinEncoding Bool where Γ := Bool encode := encodeBool decode x := some (decodeBool x) decode_encode x := congr_arg _ (decode_encodeBool x) ΓFin := Bool.fintype #align computability.fin_encoding_bool_bool Computability.finEncodingBoolBool instance inhabitedFinEncoding : Inhabited (FinEncoding Bool) := ⟨finEncodingBoolBool⟩ #align computability.inhabited_fin_encoding Computability.inhabitedFinEncoding instance inhabitedEncoding : Inhabited (Encoding Bool) := ⟨finEncodingBoolBool.toEncoding⟩ #align computability.inhabited_encoding Computability.inhabitedEncoding theorem Encoding.card_le_card_list {α : Type u} (e : Encoding.{u, v} α) : Cardinal.lift.{v} #α ≤ Cardinal.lift.{u} #(List e.Γ) := Cardinal.lift_mk_le'.2 ⟨⟨e.encode, e.encode_injective⟩⟩ #align computability.encoding.card_le_card_list Computability.Encoding.card_le_card_list theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0]
cases' isEmpty_or_nonempty e.Γ with h h
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0]
Mathlib.Computability.Encoding.247_0.rxHMk1LMmv2SbJ8
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀
Mathlib_Computability_Encoding
case inl α : Type u e : Encoding α inst✝ : Encodable e.Γ h : IsEmpty e.Γ ⊢ #(List e.Γ) ≤ ℵ₀
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead. rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] #align computability.encoding_nat_Γ' Computability.encodingNatΓ' /-- A binary fin_encoding of ℕ in Γ'. -/ def finEncodingNatΓ' : FinEncoding ℕ := ⟨encodingNatΓ', Γ'.fintype⟩ #align computability.fin_encoding_nat_Γ' Computability.finEncodingNatΓ' /-- A unary encoding function of ℕ in bool. -/ def unaryEncodeNat : Nat → List Bool | 0 => [] | n + 1 => true :: unaryEncodeNat n #align computability.unary_encode_nat Computability.unaryEncodeNat /-- A unary decoding function from `List Bool` to ℕ. -/ def unaryDecodeNat : List Bool → Nat := List.length #align computability.unary_decode_nat Computability.unaryDecodeNat theorem unary_decode_encode_nat : ∀ n, unaryDecodeNat (unaryEncodeNat n) = n := fun n => Nat.rec rfl (fun (_m : ℕ) hm => (congr_arg Nat.succ hm.symm).symm) n #align computability.unary_decode_encode_nat Computability.unary_decode_encode_nat /-- A unary fin_encoding of ℕ. -/ def unaryFinEncodingNat : FinEncoding ℕ where Γ := Bool encode := unaryEncodeNat decode n := some (unaryDecodeNat n) decode_encode n := congr_arg _ (unary_decode_encode_nat n) ΓFin := Bool.fintype #align computability.unary_fin_encoding_nat Computability.unaryFinEncodingNat /-- An encoding function of bool in bool. -/ def encodeBool : Bool → List Bool := List.ret #align computability.encode_bool Computability.encodeBool /-- A decoding function from `List Bool` to bool. -/ def decodeBool : List Bool → Bool | b :: _ => b | _ => Inhabited.default #align computability.decode_bool Computability.decodeBool theorem decode_encodeBool : ∀ b, decodeBool (encodeBool b) = b := fun b => Bool.casesOn b rfl rfl #align computability.decode_encode_bool Computability.decode_encodeBool /-- A fin_encoding of bool in bool. -/ def finEncodingBoolBool : FinEncoding Bool where Γ := Bool encode := encodeBool decode x := some (decodeBool x) decode_encode x := congr_arg _ (decode_encodeBool x) ΓFin := Bool.fintype #align computability.fin_encoding_bool_bool Computability.finEncodingBoolBool instance inhabitedFinEncoding : Inhabited (FinEncoding Bool) := ⟨finEncodingBoolBool⟩ #align computability.inhabited_fin_encoding Computability.inhabitedFinEncoding instance inhabitedEncoding : Inhabited (Encoding Bool) := ⟨finEncodingBoolBool.toEncoding⟩ #align computability.inhabited_encoding Computability.inhabitedEncoding theorem Encoding.card_le_card_list {α : Type u} (e : Encoding.{u, v} α) : Cardinal.lift.{v} #α ≤ Cardinal.lift.{u} #(List e.Γ) := Cardinal.lift_mk_le'.2 ⟨⟨e.encode, e.encode_injective⟩⟩ #align computability.encoding.card_le_card_list Computability.Encoding.card_le_card_list theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0] cases' isEmpty_or_nonempty e.Γ with h h ·
simp only [Cardinal.mk_le_aleph0]
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0] cases' isEmpty_or_nonempty e.Γ with h h ·
Mathlib.Computability.Encoding.247_0.rxHMk1LMmv2SbJ8
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀
Mathlib_Computability_Encoding
case inr α : Type u e : Encoding α inst✝ : Encodable e.Γ h : Nonempty e.Γ ⊢ #(List e.Γ) ≤ ℵ₀
/- Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pim Spelier, Daan van Gent -/ import Mathlib.Data.Fintype.Basic import Mathlib.Data.Num.Lemmas import Mathlib.SetTheory.Cardinal.Ordinal #align_import computability.encoding from "leanprover-community/mathlib"@"b6395b3a5acd655b16385fa0cdbf1961d6c34b3e" /-! # Encodings This file contains the definition of a (finite) encoding, a map from a type to strings in an alphabet, used in defining computability by Turing machines. It also contains several examples: ## Examples - `finEncodingNatBool` : a binary encoding of ℕ in a simple alphabet. - `finEncodingNatΓ'` : a binary encoding of ℕ in the alphabet used for TM's. - `unaryFinEncodingNat` : a unary encoding of ℕ - `finEncodingBoolBool` : an encoding of bool. -/ universe u v open Cardinal namespace Computability /-- An encoding of a type in a certain alphabet, together with a decoding. -/ structure Encoding (α : Type u) where Γ : Type v encode : α → List Γ decode : List Γ → Option α decode_encode : ∀ x, decode (encode x) = some x #align computability.encoding Computability.Encoding theorem Encoding.encode_injective {α : Type u} (e : Encoding α) : Function.Injective e.encode := by refine' fun _ _ h => Option.some_injective _ _ rw [← e.decode_encode, ← e.decode_encode, h] #align computability.encoding.encode_injective Computability.Encoding.encode_injective /-- An encoding plus a guarantee of finiteness of the alphabet. -/ structure FinEncoding (α : Type u) extends Encoding.{u, 0} α where ΓFin : Fintype Γ #align computability.fin_encoding Computability.FinEncoding instance Γ.fintype {α : Type u} (e : FinEncoding α) : Fintype e.toEncoding.Γ := e.ΓFin #align computability.Γ.fintype Computability.Γ.fintype /-- A standard Turing machine alphabet, consisting of blank,bit0,bit1,bra,ket,comma. -/ inductive Γ' | blank | bit (b : Bool) | bra | ket | comma deriving DecidableEq #align computability.Γ' Computability.Γ' -- Porting note: A handler for `Fintype` had not been implemented yet. instance Γ'.fintype : Fintype Γ' := ⟨⟨{.blank, .bit true, .bit false, .bra, .ket, .comma}, by decide⟩, by intro; cases_type* Γ' Bool <;> decide⟩ #align computability.Γ'.fintype Computability.Γ'.fintype instance inhabitedΓ' : Inhabited Γ' := ⟨Γ'.blank⟩ #align computability.inhabited_Γ' Computability.inhabitedΓ' /-- The natural inclusion of bool in Γ'. -/ def inclusionBoolΓ' : Bool → Γ' := Γ'.bit #align computability.inclusion_bool_Γ' Computability.inclusionBoolΓ' /-- An arbitrary section of the natural inclusion of bool in Γ'. -/ def sectionΓ'Bool : Γ' → Bool | Γ'.bit b => b | _ => Inhabited.default #align computability.section_Γ'_bool Computability.sectionΓ'Bool theorem leftInverse_section_inclusion : Function.LeftInverse sectionΓ'Bool inclusionBoolΓ' := fun x => Bool.casesOn x rfl rfl #align computability.left_inverse_section_inclusion Computability.leftInverse_section_inclusion theorem inclusionBoolΓ'_injective : Function.Injective inclusionBoolΓ' := Function.HasLeftInverse.injective (Exists.intro sectionΓ'Bool leftInverse_section_inclusion) #align computability.inclusion_bool_Γ'_injective Computability.inclusionBoolΓ'_injective /-- An encoding function of the positive binary numbers in bool. -/ def encodePosNum : PosNum → List Bool | PosNum.one => [true] | PosNum.bit0 n => false :: encodePosNum n | PosNum.bit1 n => true :: encodePosNum n #align computability.encode_pos_num Computability.encodePosNum /-- An encoding function of the binary numbers in bool. -/ def encodeNum : Num → List Bool | Num.zero => [] | Num.pos n => encodePosNum n #align computability.encode_num Computability.encodeNum /-- An encoding function of ℕ in bool. -/ def encodeNat (n : ℕ) : List Bool := encodeNum n #align computability.encode_nat Computability.encodeNat /-- A decoding function from `List Bool` to the positive binary numbers. -/ def decodePosNum : List Bool → PosNum | false :: l => PosNum.bit0 (decodePosNum l) | true :: l => ite (l = []) PosNum.one (PosNum.bit1 (decodePosNum l)) | _ => PosNum.one #align computability.decode_pos_num Computability.decodePosNum /-- A decoding function from `List Bool` to the binary numbers. -/ def decodeNum : List Bool → Num := fun l => ite (l = []) Num.zero <| decodePosNum l #align computability.decode_num Computability.decodeNum /-- A decoding function from `List Bool` to ℕ. -/ def decodeNat : List Bool → Nat := fun l => decodeNum l #align computability.decode_nat Computability.decodeNat theorem encodePosNum_nonempty (n : PosNum) : encodePosNum n ≠ [] := PosNum.casesOn n (List.cons_ne_nil _ _) (fun _m => List.cons_ne_nil _ _) fun _m => List.cons_ne_nil _ _ #align computability.encode_pos_num_nonempty Computability.encodePosNum_nonempty theorem decode_encodePosNum : ∀ n, decodePosNum (encodePosNum n) = n := by intro n induction' n with m hm m hm <;> unfold encodePosNum decodePosNum · rfl · rw [hm] exact if_neg (encodePosNum_nonempty m) · exact congr_arg PosNum.bit0 hm #align computability.decode_encode_pos_num Computability.decode_encodePosNum theorem decode_encodeNum : ∀ n, decodeNum (encodeNum n) = n := by intro n cases' n with n <;> unfold encodeNum decodeNum · rfl rw [decode_encodePosNum n] rw [PosNum.cast_to_num] exact if_neg (encodePosNum_nonempty n) #align computability.decode_encode_num Computability.decode_encodeNum theorem decode_encodeNat : ∀ n, decodeNat (encodeNat n) = n := by intro n conv_rhs => rw [← Num.to_of_nat n] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) #align computability.decode_encode_nat Computability.decode_encodeNat /-- A binary encoding of ℕ in bool. -/ def encodingNatBool : Encoding ℕ where Γ := Bool encode := encodeNat decode n := some (decodeNat n) decode_encode n := congr_arg _ (decode_encodeNat n) #align computability.encoding_nat_bool Computability.encodingNatBool /-- A binary fin_encoding of ℕ in bool. -/ def finEncodingNatBool : FinEncoding ℕ := ⟨encodingNatBool, Bool.fintype⟩ #align computability.fin_encoding_nat_bool Computability.finEncodingNatBool /-- A binary encoding of ℕ in Γ'. -/ def encodingNatΓ' : Encoding ℕ where Γ := Γ' encode x := List.map inclusionBoolΓ' (encodeNat x) decode x := some (decodeNat (List.map sectionΓ'Bool x)) decode_encode x := congr_arg _ <| by -- Porting note: `rw` can't unify `g ∘ f` with `fun x => g (f x)`, used `LeftInverse.id` -- instead. rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] #align computability.encoding_nat_Γ' Computability.encodingNatΓ' /-- A binary fin_encoding of ℕ in Γ'. -/ def finEncodingNatΓ' : FinEncoding ℕ := ⟨encodingNatΓ', Γ'.fintype⟩ #align computability.fin_encoding_nat_Γ' Computability.finEncodingNatΓ' /-- A unary encoding function of ℕ in bool. -/ def unaryEncodeNat : Nat → List Bool | 0 => [] | n + 1 => true :: unaryEncodeNat n #align computability.unary_encode_nat Computability.unaryEncodeNat /-- A unary decoding function from `List Bool` to ℕ. -/ def unaryDecodeNat : List Bool → Nat := List.length #align computability.unary_decode_nat Computability.unaryDecodeNat theorem unary_decode_encode_nat : ∀ n, unaryDecodeNat (unaryEncodeNat n) = n := fun n => Nat.rec rfl (fun (_m : ℕ) hm => (congr_arg Nat.succ hm.symm).symm) n #align computability.unary_decode_encode_nat Computability.unary_decode_encode_nat /-- A unary fin_encoding of ℕ. -/ def unaryFinEncodingNat : FinEncoding ℕ where Γ := Bool encode := unaryEncodeNat decode n := some (unaryDecodeNat n) decode_encode n := congr_arg _ (unary_decode_encode_nat n) ΓFin := Bool.fintype #align computability.unary_fin_encoding_nat Computability.unaryFinEncodingNat /-- An encoding function of bool in bool. -/ def encodeBool : Bool → List Bool := List.ret #align computability.encode_bool Computability.encodeBool /-- A decoding function from `List Bool` to bool. -/ def decodeBool : List Bool → Bool | b :: _ => b | _ => Inhabited.default #align computability.decode_bool Computability.decodeBool theorem decode_encodeBool : ∀ b, decodeBool (encodeBool b) = b := fun b => Bool.casesOn b rfl rfl #align computability.decode_encode_bool Computability.decode_encodeBool /-- A fin_encoding of bool in bool. -/ def finEncodingBoolBool : FinEncoding Bool where Γ := Bool encode := encodeBool decode x := some (decodeBool x) decode_encode x := congr_arg _ (decode_encodeBool x) ΓFin := Bool.fintype #align computability.fin_encoding_bool_bool Computability.finEncodingBoolBool instance inhabitedFinEncoding : Inhabited (FinEncoding Bool) := ⟨finEncodingBoolBool⟩ #align computability.inhabited_fin_encoding Computability.inhabitedFinEncoding instance inhabitedEncoding : Inhabited (Encoding Bool) := ⟨finEncodingBoolBool.toEncoding⟩ #align computability.inhabited_encoding Computability.inhabitedEncoding theorem Encoding.card_le_card_list {α : Type u} (e : Encoding.{u, v} α) : Cardinal.lift.{v} #α ≤ Cardinal.lift.{u} #(List e.Γ) := Cardinal.lift_mk_le'.2 ⟨⟨e.encode, e.encode_injective⟩⟩ #align computability.encoding.card_le_card_list Computability.Encoding.card_le_card_list theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0] cases' isEmpty_or_nonempty e.Γ with h h · simp only [Cardinal.mk_le_aleph0] ·
rw [Cardinal.mk_list_eq_aleph0]
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀ := by refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0] cases' isEmpty_or_nonempty e.Γ with h h · simp only [Cardinal.mk_le_aleph0] ·
Mathlib.Computability.Encoding.247_0.rxHMk1LMmv2SbJ8
theorem Encoding.card_le_aleph0 {α : Type u} (e : Encoding.{u, v} α) [Encodable e.Γ] : #α ≤ ℵ₀
Mathlib_Computability_Encoding
ι : Type u_1 c : ComplexShape ι ⊢ symm (symm c) = c
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by
ext
@[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by
Mathlib.Algebra.Homology.ComplexShape.99_0.XSrMOWOP54vJcCl
@[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c
Mathlib_Algebra_Homology_ComplexShape
case Rel.h.h.a ι : Type u_1 c : ComplexShape ι x✝¹ x✝ : ι ⊢ Rel (symm (symm c)) x✝¹ x✝ ↔ Rel c x✝¹ x✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext
simp
@[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext
Mathlib.Algebra.Homology.ComplexShape.99_0.XSrMOWOP54vJcCl
@[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ : ι w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝ w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝ ⊢ j✝ = j'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by
obtain ⟨k, w₁, w₂⟩ := w
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ : ι w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ ⊢ j✝ = j'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w
obtain ⟨k', w₁', w₂'⟩ := w'
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ k' : ι w₁' : Rel c₁ i✝ k' w₂' : Rel c₂ k' j'✝ ⊢ j✝ = j'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w'
rw [c₁.next_eq w₁ w₁'] at w₂
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w'
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ j✝ j'✝ k : ι w₁ : Rel c₁ i✝ k k' : ι w₂ : Rel c₂ k' j✝ w₁' : Rel c₁ i✝ k' w₂' : Rel c₂ k' j'✝ ⊢ j✝ = j'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂
exact c₂.next_eq w₂ w₂'
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ : ι w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝ w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝ ⊢ i✝ = i'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by
obtain ⟨k, w₁, w₂⟩ := w
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ : ι w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ ⊢ i✝ = i'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w
obtain ⟨k', w₁', w₂'⟩ := w'
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ k : ι w₁ : Rel c₁ i✝ k w₂ : Rel c₂ k j✝ k' : ι w₁' : Rel c₁ i'✝ k' w₂' : Rel c₂ k' j✝ ⊢ i✝ = i'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w'
rw [c₂.prev_eq w₂ w₂'] at w₁
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w'
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
case intro.intro.intro.intro ι : Type u_1 c₁ c₂ : ComplexShape ι i✝ i'✝ j✝ k : ι w₂ : Rel c₂ k j✝ k' : ι w₁ : Rel c₁ i✝ k' w₁' : Rel c₁ i'✝ k' w₂' : Rel c₂ k' j✝ ⊢ i✝ = i'✝
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁
exact c₁.prev_eq w₁ w₁'
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁
Mathlib.Algebra.Homology.ComplexShape.109_0.XSrMOWOP54vJcCl
/-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i : ι ⊢ Subsingleton { j // Rel c i j }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by
constructor
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by
Mathlib.Algebra.Homology.ComplexShape.128_0.XSrMOWOP54vJcCl
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq ι : Type u_1 c : ComplexShape ι i : ι ⊢ ∀ (a b : { j // Rel c i j }), a = b
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor
rintro ⟨j, rij⟩ ⟨k, rik⟩
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor
Mathlib.Algebra.Homology.ComplexShape.128_0.XSrMOWOP54vJcCl
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq.mk.mk ι : Type u_1 c : ComplexShape ι i j : ι rij : Rel c i j k : ι rik : Rel c i k ⊢ { val := j, property := rij } = { val := k, property := rik }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩
congr
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩
Mathlib.Algebra.Homology.ComplexShape.128_0.XSrMOWOP54vJcCl
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq.mk.mk.e_val ι : Type u_1 c : ComplexShape ι i j : ι rij : Rel c i j k : ι rik : Rel c i k ⊢ j = k
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr
exact c.next_eq rij rik
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr
Mathlib.Algebra.Homology.ComplexShape.128_0.XSrMOWOP54vJcCl
instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι j : ι ⊢ Subsingleton { i // Rel c i j }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by
constructor
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by
Mathlib.Algebra.Homology.ComplexShape.134_0.XSrMOWOP54vJcCl
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq ι : Type u_1 c : ComplexShape ι j : ι ⊢ ∀ (a b : { i // Rel c i j }), a = b
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor
rintro ⟨i, rik⟩ ⟨j, rjk⟩
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor
Mathlib.Algebra.Homology.ComplexShape.134_0.XSrMOWOP54vJcCl
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq.mk.mk ι : Type u_1 c : ComplexShape ι j✝ i : ι rik : Rel c i j✝ j : ι rjk : Rel c j j✝ ⊢ { val := i, property := rik } = { val := j, property := rjk }
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩
congr
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩
Mathlib.Algebra.Homology.ComplexShape.134_0.XSrMOWOP54vJcCl
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
case allEq.mk.mk.e_val ι : Type u_1 c : ComplexShape ι j✝ i : ι rik : Rel c i j✝ j : ι rjk : Rel c j j✝ ⊢ i = j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr
exact c.prev_eq rik rjk
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr
Mathlib.Algebra.Homology.ComplexShape.134_0.XSrMOWOP54vJcCl
instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j }
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ next c i = j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by
apply c.next_eq _ h
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by
Mathlib.Algebra.Homology.ComplexShape.154_0.XSrMOWOP54vJcCl
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (next c i)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h
rw [next]
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h
Mathlib.Algebra.Homology.ComplexShape.154_0.XSrMOWOP54vJcCl
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (if h : ∃ j, Rel c i j then Exists.choose h else i)
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next]
rw [dif_pos]
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next]
Mathlib.Algebra.Homology.ComplexShape.154_0.XSrMOWOP54vJcCl
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c i (Exists.choose ?hc) case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ j, Rel c i j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next] rw [dif_pos]
exact Exists.choose_spec ⟨j, h⟩
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next] rw [dif_pos]
Mathlib.Algebra.Homology.ComplexShape.154_0.XSrMOWOP54vJcCl
theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ prev c j = i
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next] rw [dif_pos] exact Exists.choose_spec ⟨j, h⟩ #align complex_shape.next_eq' ComplexShape.next_eq' theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by
apply c.prev_eq _ h
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by
Mathlib.Algebra.Homology.ComplexShape.161_0.XSrMOWOP54vJcCl
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c (prev c j) j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next] rw [dif_pos] exact Exists.choose_spec ⟨j, h⟩ #align complex_shape.next_eq' ComplexShape.next_eq' theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by apply c.prev_eq _ h
rw [prev, dif_pos]
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by apply c.prev_eq _ h
Mathlib.Algebra.Homology.ComplexShape.161_0.XSrMOWOP54vJcCl
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i
Mathlib_Algebra_Homology_ComplexShape
ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ Rel c (Exists.choose ?hc) j case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ i, Rel c i j
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Scott Morrison -/ import Mathlib.Algebra.Group.Defs import Mathlib.Logic.Relation #align_import algebra.homology.complex_shape from "leanprover-community/mathlib"@"c4658a649d216f57e99621708b09dcb3dcccbd23" /-! # Shapes of homological complexes We define a structure `ComplexShape ι` for describing the shapes of homological complexes indexed by a type `ι`. This is intended to capture chain complexes and cochain complexes, indexed by either `ℕ` or `ℤ`, as well as more exotic examples. Rather than insisting that the indexing type has a `succ` function specifying where differentials should go, inside `c : ComplexShape` we have `c.Rel : ι → ι → Prop`, and when we define `HomologicalComplex` we only allow nonzero differentials `d i j` from `i` to `j` if `c.Rel i j`. Further, we require that `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Convenience functions `c.next` and `c.prev` provide these related elements when they exist, and return their input otherwise. This design aims to avoid certain problems arising from dependent type theory. In particular we never have to ensure morphisms `d i : X i ⟶ X (succ i)` compose as expected (which would often require rewriting by equations in the indexing type). Instead such identities become separate proof obligations when verifying that a complex we've constructed is of the desired shape. If `α` is an `AddRightCancelSemigroup`, then we define `up α : ComplexShape α`, the shape appropriate for cohomology, so `d : X i ⟶ X j` is nonzero only when `j = i + 1`, as well as `down α : ComplexShape α`, appropriate for homology, so `d : X i ⟶ X j` is nonzero only when `i = j + 1`. (Later we'll introduce `CochainComplex` and `ChainComplex` as abbreviations for `HomologicalComplex` with one of these shapes baked in.) -/ open Classical noncomputable section /-- A `c : ComplexShape ι` describes the shape of a chain complex, with chain groups indexed by `ι`. Typically `ι` will be `ℕ`, `ℤ`, or `Fin n`. There is a relation `Rel : ι → ι → Prop`, and we will only allow a non-zero differential from `i` to `j` when `Rel i j`. There are axioms which imply `{ j // c.Rel i j }` and `{ i // c.Rel i j }` are subsingletons. This means that the shape consists of some union of lines, rays, intervals, and circles. Below we define `c.next` and `c.prev` which provide these related elements. -/ @[ext] structure ComplexShape (ι : Type*) where /-- Nonzero differentials `X i ⟶ X j` shall be allowed on homological complexes when `Rel i j` holds. -/ Rel : ι → ι → Prop /-- There is at most one nonzero differential from `X i`. -/ next_eq : ∀ {i j j'}, Rel i j → Rel i j' → j = j' /-- There is at most one nonzero differential to `X j`. -/ prev_eq : ∀ {i i' j}, Rel i j → Rel i' j → i = i' #align complex_shape ComplexShape #align complex_shape.ext ComplexShape.ext #align complex_shape.ext_iff ComplexShape.ext_iff namespace ComplexShape variable {ι : Type*} /-- The complex shape where only differentials from each `X.i` to itself are allowed. This is mostly only useful so we can describe the relation of "related in `k` steps" below. -/ @[simps] def refl (ι : Type*) : ComplexShape ι where Rel i j := i = j next_eq w w' := w.symm.trans w' prev_eq w w' := w.trans w'.symm #align complex_shape.refl ComplexShape.refl #align complex_shape.refl_rel ComplexShape.refl_Rel /-- The reverse of a `ComplexShape`. -/ @[simps] def symm (c : ComplexShape ι) : ComplexShape ι where Rel i j := c.Rel j i next_eq w w' := c.prev_eq w w' prev_eq w w' := c.next_eq w w' #align complex_shape.symm ComplexShape.symm #align complex_shape.symm_rel ComplexShape.symm_Rel @[simp] theorem symm_symm (c : ComplexShape ι) : c.symm.symm = c := by ext simp #align complex_shape.symm_symm ComplexShape.symm_symm theorem symm_bijective : Function.Bijective (ComplexShape.symm : ComplexShape ι → ComplexShape ι) := Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩ /-- The "composition" of two `ComplexShape`s. We need this to define "related in k steps" later. -/ @[simp] def trans (c₁ c₂ : ComplexShape ι) : ComplexShape ι where Rel := Relation.Comp c₁.Rel c₂.Rel next_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₁.next_eq w₁ w₁'] at w₂ exact c₂.next_eq w₂ w₂' prev_eq w w' := by obtain ⟨k, w₁, w₂⟩ := w obtain ⟨k', w₁', w₂'⟩ := w' rw [c₂.prev_eq w₂ w₂'] at w₁ exact c₁.prev_eq w₁ w₁' #align complex_shape.trans ComplexShape.trans instance subsingleton_next (c : ComplexShape ι) (i : ι) : Subsingleton { j // c.Rel i j } := by constructor rintro ⟨j, rij⟩ ⟨k, rik⟩ congr exact c.next_eq rij rik instance subsingleton_prev (c : ComplexShape ι) (j : ι) : Subsingleton { i // c.Rel i j } := by constructor rintro ⟨i, rik⟩ ⟨j, rjk⟩ congr exact c.prev_eq rik rjk /-- An arbitrary choice of index `j` such that `Rel i j`, if such exists. Returns `i` otherwise. -/ def next (c : ComplexShape ι) (i : ι) : ι := if h : ∃ j, c.Rel i j then h.choose else i #align complex_shape.next ComplexShape.next /-- An arbitrary choice of index `i` such that `Rel i j`, if such exists. Returns `j` otherwise. -/ def prev (c : ComplexShape ι) (j : ι) : ι := if h : ∃ i, c.Rel i j then h.choose else j #align complex_shape.prev ComplexShape.prev theorem next_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.next i = j := by apply c.next_eq _ h rw [next] rw [dif_pos] exact Exists.choose_spec ⟨j, h⟩ #align complex_shape.next_eq' ComplexShape.next_eq' theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by apply c.prev_eq _ h rw [prev, dif_pos]
exact Exists.choose_spec (⟨i, h⟩ : ∃ k, c.Rel k j)
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i := by apply c.prev_eq _ h rw [prev, dif_pos]
Mathlib.Algebra.Homology.ComplexShape.161_0.XSrMOWOP54vJcCl
theorem prev_eq' (c : ComplexShape ι) {i j : ι} (h : c.Rel i j) : c.prev j = i
Mathlib_Algebra_Homology_ComplexShape
α : Type u_1 x : ℤˣ ⊢ x ∈ {1, -1}
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by
cases Int.units_eq_one_or x
instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by
Mathlib.Data.Fintype.Units.20_0.6sF1mNVGQq4PLsW
instance UnitsInt.fintype : Fintype ℤˣ
Mathlib_Data_Fintype_Units
case inl α : Type u_1 x : ℤˣ h✝ : x = 1 ⊢ x ∈ {1, -1}
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;>
simp [*]
instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;>
Mathlib.Data.Fintype.Units.20_0.6sF1mNVGQq4PLsW
instance UnitsInt.fintype : Fintype ℤˣ
Mathlib_Data_Fintype_Units
case inr α : Type u_1 x : ℤˣ h✝ : x = -1 ⊢ x ∈ {1, -1}
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;>
simp [*]
instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;>
Mathlib.Data.Fintype.Units.20_0.6sF1mNVGQq4PLsW
instance UnitsInt.fintype : Fintype ℤˣ
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝² : GroupWithZero α inst✝¹ : Fintype α inst✝ : DecidableEq α ⊢ card α = card αˣ + 1
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by
rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)]
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by
Mathlib.Data.Fintype.Units.37_0.6sF1mNVGQq4PLsW
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝² : GroupWithZero α inst✝¹ : Fintype α inst✝ : DecidableEq α ⊢ card { a // a ≠ 0 } + 1 = card α
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)]
have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α)))
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)]
Mathlib.Data.Fintype.Units.37_0.6sF1mNVGQq4PLsW
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝² : GroupWithZero α inst✝¹ : Fintype α inst✝ : DecidableEq α this : card ({ a // a = 0 } ⊕ { a // ¬a = 0 }) = card α ⊢ card { a // a ≠ 0 } + 1 = card α
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α)))
rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α)))
Mathlib.Data.Fintype.Units.37_0.6sF1mNVGQq4PLsW
theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝¹ : GroupWithZero α inst✝ : Finite α ⊢ Nat.card α = Nat.card αˣ + 1
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α))) rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by
have : Fintype α := Fintype.ofFinite α
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by
Mathlib.Data.Fintype.Units.43_0.6sF1mNVGQq4PLsW
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝¹ : GroupWithZero α inst✝ : Finite α this : Fintype α ⊢ Nat.card α = Nat.card αˣ + 1
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α))) rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by have : Fintype α := Fintype.ofFinite α
classical rw [Nat.card_eq_fintype_card, Nat.card_eq_fintype_card, Fintype.card_eq_card_units_add_one]
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by have : Fintype α := Fintype.ofFinite α
Mathlib.Data.Fintype.Units.43_0.6sF1mNVGQq4PLsW
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝¹ : GroupWithZero α inst✝ : Finite α this : Fintype α ⊢ Nat.card α = Nat.card αˣ + 1
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α))) rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by have : Fintype α := Fintype.ofFinite α classical
rw [Nat.card_eq_fintype_card, Nat.card_eq_fintype_card, Fintype.card_eq_card_units_add_one]
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by have : Fintype α := Fintype.ofFinite α classical
Mathlib.Data.Fintype.Units.43_0.6sF1mNVGQq4PLsW
theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1
Mathlib_Data_Fintype_Units
α : Type u_1 inst✝² : GroupWithZero α inst✝¹ : Fintype α inst✝ : DecidableEq α ⊢ card αˣ = card α - 1
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Sum import Mathlib.Data.Int.Units import Mathlib.SetTheory.Cardinal.Finite #align_import data.fintype.units from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226" /-! # fintype instances relating to units -/ variable {α : Type*} instance UnitsInt.fintype : Fintype ℤˣ := ⟨{1, -1}, fun x ↦ by cases Int.units_eq_one_or x <;> simp [*]⟩ #align units_int.fintype UnitsInt.fintype @[simp] theorem UnitsInt.univ : (Finset.univ : Finset ℤˣ) = {1, -1} := rfl #align units_int.univ UnitsInt.univ @[simp] theorem Fintype.card_units_int : Fintype.card ℤˣ = 2 := rfl #align fintype.card_units_int Fintype.card_units_int instance [Monoid α] [Fintype α] [DecidableEq α] : Fintype αˣ := Fintype.ofEquiv _ (unitsEquivProdSubtype α).symm instance [Monoid α] [Finite α] : Finite αˣ := Finite.of_injective _ Units.ext theorem Fintype.card_eq_card_units_add_one [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card α = Fintype.card αˣ + 1 := by rw [eq_comm, Fintype.card_congr (unitsEquivNeZero α)] have := Fintype.card_congr (Equiv.sumCompl (· = (0 : α))) rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this theorem Nat.card_eq_card_units_add_one [GroupWithZero α] [Finite α] : Nat.card α = Nat.card αˣ + 1 := by have : Fintype α := Fintype.ofFinite α classical rw [Nat.card_eq_fintype_card, Nat.card_eq_fintype_card, Fintype.card_eq_card_units_add_one] theorem Fintype.card_units [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card αˣ = Fintype.card α - 1 := by
rw [@Fintype.card_eq_card_units_add_one α, Nat.add_sub_cancel]
theorem Fintype.card_units [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card αˣ = Fintype.card α - 1 := by
Mathlib.Data.Fintype.Units.49_0.6sF1mNVGQq4PLsW
theorem Fintype.card_units [GroupWithZero α] [Fintype α] [DecidableEq α] : Fintype.card αˣ = Fintype.card α - 1
Mathlib_Data_Fintype_Units
θ : ℂ ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by
have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by
rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub]
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ cexp (θ * I - -θ * I) = -1 ↔ cexp (2 * θ * I) = -1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub]
congr 3
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub]
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ cexp (θ * I - -θ * I) = -1 ↔ cexp (2 * θ * I) = -1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3;
ring_nf
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3;
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 ⊢ cos θ = 0 ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf
rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 ⊢ (∃ n, 2 * I * θ = ↑π * I + ↑n * (2 * ↑π * I)) ↔ ∃ k, θ = (2 * ↑k + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
refine' exists_congr fun x => _
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 x : ℤ ⊢ 2 * I * θ = ↑π * I + ↑x * (2 * ↑π * I) ↔ θ = (2 * ↑x + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _
refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero)
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 x : ℤ ⊢ ↑π * I + ↑x * (2 * ↑π * I) = 2 * I * ((2 * ↑x + 1) * ↑π / 2)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero)
field_simp
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero)
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : (cexp (θ * I) + cexp (-θ * I)) / 2 = 0 ↔ cexp (2 * θ * I) = -1 x : ℤ ⊢ (↑π * I + ↑x * (2 * ↑π * I)) * 2 = 2 * I * ((2 * ↑x + 1) * ↑π)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp;
ring
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp;
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.31_0.wRglntQQQHH0e1R
theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ cos θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ (2 * ↑k + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by
rw [← not_exists, not_iff_not, cos_eq_zero_iff]
theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.42_0.wRglntQQQHH0e1R
theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ sin θ = 0 ↔ ∃ k, θ = ↑k * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by
rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff]
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) ↔ ∃ k, θ = ↑k * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff]
constructor
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff]
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case mp θ : ℂ ⊢ (∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2) → ∃ k, θ = ↑k * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor ·
rintro ⟨k, hk⟩
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor ·
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case mp.intro θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ ∃ k, θ = ↑k * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩
use k + 1
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case h θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ θ = ↑(k + 1) * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1
field_simp [eq_add_of_sub_eq hk]
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case h θ : ℂ k : ℤ hk : θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2 ⊢ (2 * ↑k + 1) * ↑π + ↑π = (↑k + 1) * ↑π * 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk]
ring
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk]
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case mpr θ : ℂ ⊢ (∃ k, θ = ↑k * ↑π) → ∃ k, θ - ↑π / 2 = (2 * ↑k + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring ·
rintro ⟨k, rfl⟩
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring ·
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case mpr.intro k : ℤ ⊢ ∃ k_1, ↑k * ↑π - ↑π / 2 = (2 * ↑k_1 + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩
use k - 1
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case h k : ℤ ⊢ ↑k * ↑π - ↑π / 2 = (2 * ↑(k - 1) + 1) * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1
field_simp
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
case h k : ℤ ⊢ ↑k * ↑π * 2 - ↑π = (2 * (↑k - 1) + 1) * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp
ring
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.46_0.wRglntQQQHH0e1R
theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ sin θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by
rw [← not_exists, not_iff_not, sin_eq_zero_iff]
theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.59_0.wRglntQQQHH0e1R
theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by
have h := (sin_two_mul θ).symm
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.63_0.wRglntQQQHH0e1R
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : 2 * sin θ * cos θ = sin (2 * θ) ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm
rw [mul_assoc] at h
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.63_0.wRglntQQQHH0e1R
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : 2 * (sin θ * cos θ) = sin (2 * θ) ⊢ tan θ = 0 ↔ ∃ k, θ = ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h
rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm]
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.63_0.wRglntQQQHH0e1R
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ h : 2 * (sin θ * cos θ) = sin (2 * θ) ⊢ sin (θ * 2) / 2 = 0 / 2 ↔ ∃ k, θ = ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm]
simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm]
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.63_0.wRglntQQQHH0e1R
theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
θ : ℂ ⊢ tan θ ≠ 0 ↔ ∀ (k : ℤ), θ ≠ ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm] simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff #align complex.tan_eq_zero_iff Complex.tan_eq_zero_iff theorem tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 := by
rw [← not_exists, not_iff_not, tan_eq_zero_iff]
theorem tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.72_0.wRglntQQQHH0e1R
theorem tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
n : ℤ ⊢ ∃ k, ↑n * ↑π / 2 = ↑k * ↑π / 2
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm] simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff #align complex.tan_eq_zero_iff Complex.tan_eq_zero_iff theorem tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 := by rw [← not_exists, not_iff_not, tan_eq_zero_iff] #align complex.tan_ne_zero_iff Complex.tan_ne_zero_iff theorem tan_int_mul_pi_div_two (n : ℤ) : tan (n * π / 2) = 0 := tan_eq_zero_iff.mpr (by
use n
theorem tan_int_mul_pi_div_two (n : ℤ) : tan (n * π / 2) = 0 := tan_eq_zero_iff.mpr (by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.76_0.wRglntQQQHH0e1R
theorem tan_int_mul_pi_div_two (n : ℤ) : tan (n * π / 2) = 0
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex
x y : ℂ ⊢ cos x - cos y = 0 ↔ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Algebra.QuadraticDiscriminant import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import analysis.special_functions.trigonometric.complex from "leanprover-community/mathlib"@"8f9fea08977f7e450770933ee6abb20733b47c92" /-! # Complex trigonometric functions Basic facts and derivatives for the complex trigonometric functions. Several facts about the real trigonometric functions have the proofs deferred here, rather than `Analysis.SpecialFunctions.Trigonometric.Basic`, as they are most easily proved by appealing to the corresponding fact for complex trigonometric functions, or require additional imports which are not available in that file. -/ noncomputable section namespace Complex open Set Filter open scoped Real theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2 := by have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul, add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub] congr 3; ring_nf rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm] refine' exists_congr fun x => _ refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero) field_simp; ring #align complex.cos_eq_zero_iff Complex.cos_eq_zero_iff theorem cos_ne_zero_iff {θ : ℂ} : cos θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ (2 * k + 1) * π / 2 := by rw [← not_exists, not_iff_not, cos_eq_zero_iff] #align complex.cos_ne_zero_iff Complex.cos_ne_zero_iff theorem sin_eq_zero_iff {θ : ℂ} : sin θ = 0 ↔ ∃ k : ℤ, θ = k * π := by rw [← Complex.cos_sub_pi_div_two, cos_eq_zero_iff] constructor · rintro ⟨k, hk⟩ use k + 1 field_simp [eq_add_of_sub_eq hk] ring · rintro ⟨k, rfl⟩ use k - 1 field_simp ring #align complex.sin_eq_zero_iff Complex.sin_eq_zero_iff theorem sin_ne_zero_iff {θ : ℂ} : sin θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π := by rw [← not_exists, not_iff_not, sin_eq_zero_iff] #align complex.sin_ne_zero_iff Complex.sin_ne_zero_iff theorem tan_eq_zero_iff {θ : ℂ} : tan θ = 0 ↔ ∃ k : ℤ, θ = k * π / 2 := by have h := (sin_two_mul θ).symm rw [mul_assoc] at h rw [tan, div_eq_zero_iff, ← mul_eq_zero, ← zero_mul (1 / 2 : ℂ), mul_one_div, CancelDenoms.cancel_factors_eq_div h two_ne_zero, mul_comm] simpa only [zero_div, zero_mul, Ne.def, not_false_iff, field_simps] using sin_eq_zero_iff #align complex.tan_eq_zero_iff Complex.tan_eq_zero_iff theorem tan_ne_zero_iff {θ : ℂ} : tan θ ≠ 0 ↔ ∀ k : ℤ, θ ≠ k * π / 2 := by rw [← not_exists, not_iff_not, tan_eq_zero_iff] #align complex.tan_ne_zero_iff Complex.tan_ne_zero_iff theorem tan_int_mul_pi_div_two (n : ℤ) : tan (n * π / 2) = 0 := tan_eq_zero_iff.mpr (by use n) #align complex.tan_int_mul_pi_div_two Complex.tan_int_mul_pi_div_two theorem cos_eq_cos_iff {x y : ℂ} : cos x = cos y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x := calc cos x = cos y ↔ cos x - cos y = 0 := sub_eq_zero.symm _ ↔ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0 := by
rw [cos_sub_cos]
theorem cos_eq_cos_iff {x y : ℂ} : cos x = cos y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x := calc cos x = cos y ↔ cos x - cos y = 0 := sub_eq_zero.symm _ ↔ -2 * sin ((x + y) / 2) * sin ((x - y) / 2) = 0 := by
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.80_0.wRglntQQQHH0e1R
theorem cos_eq_cos_iff {x y : ℂ} : cos x = cos y ↔ ∃ k : ℤ, y = 2 * k * π + x ∨ y = 2 * k * π - x
Mathlib_Analysis_SpecialFunctions_Trigonometric_Complex