state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case hf α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).negPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hf α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).negPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case hfm α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).posPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).posPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).posPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ AEMeasurable fun x => Measure.rnDeriv (toJordanDecomposition s).negPart μ x
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).negPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α inst✝ : HaveLebesgueDecomposition s μ ⊢ ∫⁻ (x : α), Measure.rnDeriv (toJordanDecomposition s).negPart μ x ∂μ ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
exact (lintegral_rnDeriv_lt_top _ _).ne
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first |
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.205_0.HPGboz0rhL6sBes
/-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by
rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.235_0.HPGboz0rhL6sBes
theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x)
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf))
theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.235_0.HPGboz0rhL6sBes
theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x)
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ IsFiniteMeasure ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by
haveI := isFiniteMeasure_withDensity_ofReal hfi.2
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) ⊢ IsFiniteMeasure ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2;
infer_instance
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2;
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ IsFiniteMeasure ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by
haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) ⊢ IsFiniteMeasure ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2;
infer_instance
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2;
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ toJordanDecomposition s = JordanDecomposition.mk ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)) (_ : ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by
haveI := isFiniteMeasure_withDensity_ofReal hfi.2
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) ⊢ toJordanDecomposition s = JordanDecomposition.mk ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)) (_ : ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2
haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) ⊢ toJordanDecomposition s = JordanDecomposition.mk ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)) (_ : ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2
refine' toJordanDecomposition_eq _
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) ⊢ s = JordanDecomposition.toSignedMeasure (JordanDecomposition.mk ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)) (_ : ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) ⟂ₘ (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _
simp_rw [JordanDecomposition.toSignedMeasure, hadd]
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) ⊢ t + withDensityᵥ μ f = toSignedMeasure ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) - toSignedMeasure ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd]
ext i hi
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) i : Set α hi : MeasurableSet i ⊢ ↑(t + withDensityᵥ μ f) i = ↑(toSignedMeasure ((toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)) - toSignedMeasure ((toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x))) i
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi
rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply]
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.ha α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) i : Set α hi : MeasurableSet i ⊢ ↑↑(toJordanDecomposition t).negPart i ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
exact (measure_lt_top _ _).ne
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.hb α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) i : Set α hi : MeasurableSet i ⊢ ↑↑(withDensity μ fun x => ENNReal.ofReal (-f x)) i ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
exact (measure_lt_top _ _).ne
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.ha α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) i : Set α hi : MeasurableSet i ⊢ ↑↑(toJordanDecomposition t).posPart i ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
exact (measure_lt_top _ _).ne
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.hb α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f this✝ : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal (f x)) this : IsFiniteMeasure (withDensity μ fun x => ENNReal.ofReal ((-f) x)) i : Set α hi : MeasurableSet i ⊢ ↑↑(withDensity μ fun x => ENNReal.ofReal (f x)) i ≠ ⊤
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
exact (measure_lt_top _ _).ne
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.248_0.HPGboz0rhL6sBes
theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by
have htμ' := htμ
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ
rw [mutuallySingular_ennreal_iff] at htμ
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : totalVariation t ⟂ₘ VectorMeasure.ennrealToMeasure (toENNRealVectorMeasure μ) hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ
change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : totalVariation t ⟂ₘ Equiv.toFun VectorMeasure.equivMeasure (Equiv.invFun VectorMeasure.equivMeasure μ) ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ
rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ
refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] }
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ Measure.HaveLebesgueDecomposition (toJordanDecomposition s).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by
use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ Measurable ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).2 ∧ ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).1 ⟂ₘ μ ∧ (toJordanDecomposition s).posPart = ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).1 + withDensity μ ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).2
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩
refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ (toJordanDecomposition s).posPart = ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).1 + withDensity μ ((toJordanDecomposition t).posPart, fun x => ENNReal.ofReal (f x)).2
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩
rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd]
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ Measure.HaveLebesgueDecomposition (toJordanDecomposition s).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by
use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ Measurable ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).2 ∧ ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).1 ⟂ₘ μ ∧ (toJordanDecomposition s).negPart = ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).1 + withDensity μ ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).2
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩
refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f hfi : Integrable f hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ ⊢ (toJordanDecomposition s).negPart = ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).1 + withDensity μ ((toJordanDecomposition t).negPart, fun x => ENNReal.ofReal (-f x)).2
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩
rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd]
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.274_0.HPGboz0rhL6sBes
private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by
by_cases hfi : Integrable f μ
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.291_0.HPGboz0rhL6sBes
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : Integrable f ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ ·
exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.291_0.HPGboz0rhL6sBes
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : ¬Integrable f ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd ·
rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.291_0.HPGboz0rhL6sBes
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t hfi : ¬Integrable f ⊢ HaveLebesgueDecomposition s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.291_0.HPGboz0rhL6sBes
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α f : α → ℝ hf : Measurable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t hfi : ¬Integrable f ⊢ s = t + withDensityᵥ μ 0
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _
rwa [withDensityᵥ_zero, add_zero]
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.291_0.HPGboz0rhL6sBes
theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by
have htμ' := htμ
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ
rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure]
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ toSignedMeasure (toJordanDecomposition t).posPart - toSignedMeasure (toJordanDecomposition t).negPart = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure]
congr
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ (toJordanDecomposition t).posPart = Measure.singularPart (toJordanDecomposition s).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr ·
have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ Measurable fun x => ENNReal.ofReal (f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by
measurability
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ hfpos : Measurable fun x => ENNReal.ofReal (f x) ⊢ (toJordanDecomposition t).posPart = Measure.singularPart (toJordanDecomposition s).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability
refine' eq_singularPart hfpos htμ.1 _
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ hfpos : Measurable fun x => ENNReal.ofReal (f x) ⊢ (toJordanDecomposition s).posPart = (toJordanDecomposition t).posPart + withDensity μ fun x => ENNReal.ofReal (f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _
rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd]
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ (toJordanDecomposition t).negPart = Measure.singularPart (toJordanDecomposition s).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] ·
have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ ⊢ Measurable fun x => ENNReal.ofReal (-f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by
measurability
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ hfneg : Measurable fun x => ENNReal.ofReal (-f x) ⊢ (toJordanDecomposition t).negPart = Measure.singularPart (toJordanDecomposition s).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability
refine' eq_singularPart hfneg htμ.2 _
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case e_a.e_μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hf : Measurable f hfi : Integrable f htμ : (toJordanDecomposition t).posPart ⟂ₘ μ ∧ (toJordanDecomposition t).negPart ⟂ₘ μ hadd : s = t + withDensityᵥ μ f htμ' : t ⟂ᵥ toENNRealVectorMeasure μ hfneg : Measurable fun x => ENNReal.ofReal (-f x) ⊢ (toJordanDecomposition s).negPart = (toJordanDecomposition t).negPart + withDensity μ fun x => ENNReal.ofReal (-f x)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _
rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd]
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.301_0.HPGboz0rhL6sBes
private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by
by_cases hfi : Integrable f μ
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : Integrable f ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ ·
refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case pos α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : Integrable f ⊢ s = t + withDensityᵥ μ (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _
convert hadd using 2
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.e'_3.h.e'_6 α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : Integrable f ⊢ withDensityᵥ μ (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) = withDensityᵥ μ f
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2
exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f hfi : ¬Integrable f ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm ·
rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t hfi : ¬Integrable f ⊢ t = singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case neg α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t hfi : ¬Integrable f ⊢ s = t + withDensityᵥ μ 0
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _
rwa [withDensityᵥ_zero, add_zero]
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.317_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α ⊢ singularPart 0 μ = 0
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by
refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm
theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.332_0.HPGboz0rhL6sBes
theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s t : SignedMeasure α μ : Measure α ⊢ 0 = 0 + withDensityᵥ μ 0
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm
rw [zero_add, withDensityᵥ_zero]
theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.332_0.HPGboz0rhL6sBes
theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α ⊢ singularPart (-s) μ = -singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by
have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart]
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α ⊢ toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).posPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by
refine' toSignedMeasure_congr _
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α ⊢ Measure.singularPart (toJordanDecomposition (-s)).posPart μ = Measure.singularPart (toJordanDecomposition s).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _
rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart]
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α h₁ : toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).posPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ) ⊢ singularPart (-s) μ = -singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart]
have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart]
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α h₁ : toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).posPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ) ⊢ toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).negPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by
refine' toSignedMeasure_congr _
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α h₁ : toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).posPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ) ⊢ Measure.singularPart (toJordanDecomposition (-s)).negPart μ = Measure.singularPart (toJordanDecomposition s).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _
rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart]
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α h₁ : toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).posPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ) h₂ : toSignedMeasure (Measure.singularPart (toJordanDecomposition (-s)).negPart μ) = toSignedMeasure (Measure.singularPart (toJordanDecomposition s).posPart μ) ⊢ singularPart (-s) μ = -singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart]
rw [singularPart, singularPart, neg_sub, h₁, h₂]
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.337_0.HPGboz0rhL6sBes
theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by
rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 ⊢ toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ) = toSignedMeasure (r • Measure.singularPart (toJordanDecomposition s).posPart μ) - toSignedMeasure (r • Measure.singularPart (toJordanDecomposition s).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul]
conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
congr
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr
· congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
congr
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr
· rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
· congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
congr
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 | Measure.singularPart (toJordanDecomposition (r • s)).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr
rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul]
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.352_0.HPGboz0rhL6sBes
theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by
cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ x✝ : 0 ≤ r ∨ r < 0 ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by
cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inl α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : 0 ≤ r ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with
| inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inl α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : 0 ≤ r ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr =>
lift r to ℝ≥0 using hr
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue