state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case inl.intro α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ≥0 ⊢ singularPart (↑r • s) μ = ↑r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr
exact singularPart_smul_nnreal s μ r
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inr α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r
| inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inr α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 ⊢ singularPart (r • s) μ = r • singularPart s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr =>
rw [singularPart, singularPart]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inr α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 ⊢ toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ) = r • (toSignedMeasure (Measure.singularPart (toJordanDecomposition s).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart]
conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
congr
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ) case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr
· congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).posPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
congr
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr
· rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).posPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
· congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | toSignedMeasure (Measure.singularPart (toJordanDecomposition (r • s)).negPart μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
congr
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr
· rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case a.μ α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 | Measure.singularPart (toJordanDecomposition (r • s)).negPart μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case inr α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α r : ℝ hr : r < 0 ⊢ toSignedMeasure (Real.toNNReal (-r) • Measure.singularPart (toJordanDecomposition s).negPart μ) - toSignedMeasure (Real.toNNReal (-r) • Measure.singularPart (toJordanDecomposition s).posPart μ) = r • (toSignedMeasure (Measure.singularPart (toJordanDecomposition s).posPart μ) - toSignedMeasure (Measure.singularPart (toJordanDecomposition s).negPart μ))
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg]
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.363_0.HPGboz0rhL6sBes
nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ ⊢ singularPart (s + t) μ = singularPart s μ + singularPart t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by
refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm
theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.383_0.HPGboz0rhL6sBes
theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ ⊢ s + t = singularPart s μ + singularPart t μ + withDensityᵥ μ (rnDeriv s μ + rnDeriv t μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm
rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq]
theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.383_0.HPGboz0rhL6sBes
theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ ⊢ singularPart (s - t) μ = singularPart s μ - singularPart t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by
rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg]
theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.396_0.HPGboz0rhL6sBes
theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f ⊢ f =ᶠ[ae μ] rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by
set f' := hfi.1.mk f
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) ⊢ f =ᶠ[ae μ] rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f
have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) ⊢ s = t + withDensityᵥ μ f'
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by
convert hadd using 2
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.e'_3.h.e'_6 α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) ⊢ withDensityᵥ μ f' = withDensityᵥ μ f
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2
exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) hadd' : s = t + withDensityᵥ μ f' ⊢ f =ᶠ[ae μ] rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm
have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd'
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) hadd' : s = t + withDensityᵥ μ f' this : HaveLebesgueDecomposition s μ ⊢ f =ᶠ[ae μ] rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd'
refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd'
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α s t✝ t : SignedMeasure α f : α → ℝ hfi : Integrable f htμ : t ⟂ᵥ toENNRealVectorMeasure μ hadd : s = t + withDensityᵥ μ f f' : α → ℝ := AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) hadd' : s = t + withDensityᵥ μ f' this : HaveLebesgueDecomposition s μ ⊢ withDensityᵥ μ (rnDeriv s μ) = withDensityᵥ μ f
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm
rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq]
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.402_0.HPGboz0rhL6sBes
/-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α inst✝ : HaveLebesgueDecomposition s μ ⊢ rnDeriv (-s) μ =ᶠ[ae μ] -rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by
refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _
theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.418_0.HPGboz0rhL6sBes
theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α inst✝ : HaveLebesgueDecomposition s μ ⊢ withDensityᵥ μ (rnDeriv (-s) μ) = withDensityᵥ μ (-rnDeriv s μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _
rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq]
theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.418_0.HPGboz0rhL6sBes
theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α inst✝ : HaveLebesgueDecomposition s μ r : ℝ ⊢ rnDeriv (r • s) μ =ᶠ[ae μ] r • rnDeriv s μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by
refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _
theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.427_0.HPGboz0rhL6sBes
theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t s : SignedMeasure α μ : Measure α inst✝ : HaveLebesgueDecomposition s μ r : ℝ ⊢ withDensityᵥ μ (rnDeriv (r • s) μ) = withDensityᵥ μ (r • rnDeriv s μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _
rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq]
theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.427_0.HPGboz0rhL6sBes
theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝² : HaveLebesgueDecomposition s μ inst✝¹ : HaveLebesgueDecomposition t μ inst✝ : HaveLebesgueDecomposition (s + t) μ ⊢ rnDeriv (s + t) μ =ᶠ[ae μ] rnDeriv s μ + rnDeriv t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by
refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _
theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.437_0.HPGboz0rhL6sBes
theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝² : HaveLebesgueDecomposition s μ inst✝¹ : HaveLebesgueDecomposition t μ inst✝ : HaveLebesgueDecomposition (s + t) μ ⊢ withDensityᵥ μ (rnDeriv (s + t) μ) = withDensityᵥ μ (rnDeriv s μ + rnDeriv t μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _
rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq]
theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.437_0.HPGboz0rhL6sBes
theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ hst : HaveLebesgueDecomposition (s - t) μ ⊢ rnDeriv (s - t) μ =ᶠ[ae μ] rnDeriv s μ - rnDeriv t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by
rw [sub_eq_add_neg] at hst
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.450_0.HPGboz0rhL6sBes
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ hst : HaveLebesgueDecomposition (s + -t) μ ⊢ rnDeriv (s - t) μ =ᶠ[ae μ] rnDeriv s μ - rnDeriv t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst
rw [sub_eq_add_neg, sub_eq_add_neg]
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.450_0.HPGboz0rhL6sBes
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α s✝ t✝ s t : SignedMeasure α μ : Measure α inst✝¹ : HaveLebesgueDecomposition s μ inst✝ : HaveLebesgueDecomposition t μ hst : HaveLebesgueDecomposition (s + -t) μ ⊢ rnDeriv (s + -t) μ =ᶠ[ae μ] rnDeriv s μ + -rnDeriv t μ
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg]
exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _))
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.450_0.HPGboz0rhL6sBes
theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α c✝ c : ComplexMeasure α μ : Measure α ⊢ Integrable (rnDeriv c μ)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by
rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff]
theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.489_0.HPGboz0rhL6sBes
theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ✝ ν : Measure α c✝ c : ComplexMeasure α μ : Measure α ⊢ Memℒp (fun x => IsROrC.re (rnDeriv c μ x)) 1 ∧ Memℒp (fun x => IsROrC.im (rnDeriv c μ x)) 1
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff]
exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩
theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.489_0.HPGboz0rhL6sBes
theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ ⊢ singularPart c μ + Measure.withDensityᵥ μ (rnDeriv c μ) = c
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by
conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ | c
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
rw [← c.toComplexMeasure_to_signedMeasure]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ | c
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
rw [← c.toComplexMeasure_to_signedMeasure]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ | c
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
rw [← c.toComplexMeasure_to_signedMeasure]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs =>
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ ⊢ singularPart c μ + Measure.withDensityᵥ μ (rnDeriv c μ) = SignedMeasure.toComplexMeasure (re c) (im c)
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure]
ext i hi : 1
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ ↑(singularPart c μ + Measure.withDensityᵥ μ (rnDeriv c μ)) i = ↑(SignedMeasure.toComplexMeasure (re c) (im c)) i
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1
rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ ↑(singularPart c μ) i + ↑(Measure.withDensityᵥ μ (rnDeriv c μ)) i = { re := ↑(re c) i, im := ↑(im c) i }
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply]
apply Complex.ext
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply]
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ (↑(singularPart c μ) i + ↑(Measure.withDensityᵥ μ (rnDeriv c μ)) i).re = { re := ↑(re c) i, im := ↑(im c) i }.re
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext ·
rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ (↑(singularPart c μ) i).re + ↑(Measure.withDensityᵥ μ fun a => (rnDeriv c μ a).re) i = { re := ↑(re c) i, im := ↑(im c) i }.re
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] ·
change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ ↑(SignedMeasure.singularPart (re c) μ + Measure.withDensityᵥ μ (SignedMeasure.rnDeriv (re c) μ)) i = { re := ↑(re c) i, im := ↑(im c) i }.re
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _
rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ Integrable fun a => (rnDeriv c μ a).re
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] ·
exact SignedMeasure.integrable_rnDeriv _ _
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ (↑(singularPart c μ) i + ↑(Measure.withDensityᵥ μ (rnDeriv c μ)) i).im = { re := ↑(re c) i, im := ↑(im c) i }.im
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ ·
rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ (↑(singularPart c μ) i).im + ↑(Measure.withDensityᵥ μ fun a => (rnDeriv c μ a).im) i = { re := ↑(re c) i, im := ↑(im c) i }.im
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] ·
change (c.im.singularPart μ + μ.withDensityᵥ (c.im.rnDeriv μ)) i = _
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
case h.a α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ ↑(SignedMeasure.singularPart (im c) μ + Measure.withDensityᵥ μ (SignedMeasure.rnDeriv (im c) μ)) i = { re := ↑(re c) i, im := ↑(im c) i }.im
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] · change (c.im.singularPart μ + μ.withDensityᵥ (c.im.rnDeriv μ)) i = _
rw [c.im.singularPart_add_withDensity_rnDeriv_eq μ]
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] · change (c.im.singularPart μ + μ.withDensityᵥ (c.im.rnDeriv μ)) i = _
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α c : ComplexMeasure α inst✝ : HaveLebesgueDecomposition c μ i : Set α hi : MeasurableSet i ⊢ Integrable fun a => (rnDeriv c μ a).im
/- Copyright (c) 2021 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import Mathlib.MeasureTheory.Decomposition.Lebesgue import Mathlib.MeasureTheory.Measure.Complex /-! # Lebesgue decomposition This file proves the Lebesgue decomposition theorem for signed measures. The Lebesgue decomposition theorem states that, given two σ-finite measures `μ` and `ν`, there exists a σ-finite measure `ξ` and a measurable function `f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`. ## Main definitions * `MeasureTheory.SignedMeasure.HaveLebesgueDecomposition` : A signed measure `s` and a measure `μ` is said to `HaveLebesgueDecomposition` if both the positive part and negative part of `s` `HaveLebesgueDecomposition` with respect to `μ`. * `MeasureTheory.SignedMeasure.singularPart` : The singular part between a signed measure `s` and a measure `μ` is simply the singular part of the positive part of `s` with respect to `μ` minus the singular part of the negative part of `s` with respect to `μ`. * `MeasureTheory.SignedMeasure.rnDeriv` : The Radon-Nikodym derivative of a signed measure `s` with respect to a measure `μ` is the Radon-Nikodym derivative of the positive part of `s` with respect to `μ` minus the Radon-Nikodym derivative of the negative part of `s` with respect to `μ`. ## Main results * `MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq` : the Lebesgue decomposition theorem between a signed measure and a σ-finite positive measure. ## Tags Lebesgue decomposition theorem -/ noncomputable section open scoped Classical MeasureTheory NNReal ENNReal open Set variable {α β : Type*} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} namespace MeasureTheory namespace SignedMeasure open Measure /-- A signed measure `s` is said to `HaveLebesgueDecomposition` with respect to a measure `μ` if the positive part and the negative part of `s` both `HaveLebesgueDecomposition` with respect to `μ`. -/ class HaveLebesgueDecomposition (s : SignedMeasure α) (μ : Measure α) : Prop where posPart : s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ negPart : s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ #align measure_theory.signed_measure.have_lebesgue_decomposition MeasureTheory.SignedMeasure.HaveLebesgueDecomposition #align measure_theory.signed_measure.have_lebesgue_decomposition.pos_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.posPart #align measure_theory.signed_measure.have_lebesgue_decomposition.neg_part MeasureTheory.SignedMeasure.HaveLebesgueDecomposition.negPart attribute [instance] HaveLebesgueDecomposition.posPart attribute [instance] HaveLebesgueDecomposition.negPart theorem not_haveLebesgueDecomposition_iff (s : SignedMeasure α) (μ : Measure α) : ¬s.HaveLebesgueDecomposition μ ↔ ¬s.toJordanDecomposition.posPart.HaveLebesgueDecomposition μ ∨ ¬s.toJordanDecomposition.negPart.HaveLebesgueDecomposition μ := ⟨fun h => not_or_of_imp fun hp hn => h ⟨hp, hn⟩, fun h hl => (not_and_or.2 h) ⟨hl.1, hl.2⟩⟩ #align measure_theory.signed_measure.not_have_lebesgue_decomposition_iff MeasureTheory.SignedMeasure.not_haveLebesgueDecomposition_iff -- `infer_instance` directly does not work -- see Note [lower instance priority] instance (priority := 100) haveLebesgueDecomposition_of_sigmaFinite (s : SignedMeasure α) (μ : Measure α) [SigmaFinite μ] : s.HaveLebesgueDecomposition μ where posPart := inferInstance negPart := inferInstance #align measure_theory.signed_measure.have_lebesgue_decomposition_of_sigma_finite MeasureTheory.SignedMeasure.haveLebesgueDecomposition_of_sigmaFinite instance haveLebesgueDecomposition_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] infer_instance negPart := by rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_neg MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg instance haveLebesgueDecomposition_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ≥0) : (r • s).HaveLebesgueDecomposition μ where posPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart] infer_instance negPart := by rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart] infer_instance #align measure_theory.signed_measure.have_lebesgue_decomposition_smul MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul instance haveLebesgueDecomposition_smul_real (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).HaveLebesgueDecomposition μ := by by_cases hr : 0 ≤ r · lift r to ℝ≥0 using hr exact s.haveLebesgueDecomposition_smul μ _ · rw [not_le] at hr refine' { posPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr] infer_instance negPart := by rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr] infer_instance } #align measure_theory.signed_measure.have_lebesgue_decomposition_smul_real MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real /-- Given a signed measure `s` and a measure `μ`, `s.singularPart μ` is the signed measure such that `s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s` and `s.singularPart μ` is mutually singular with respect to `μ`. -/ def singularPart (s : SignedMeasure α) (μ : Measure α) : SignedMeasure α := (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure - (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure #align measure_theory.signed_measure.singular_part MeasureTheory.SignedMeasure.singularPart section theorem singularPart_mutuallySingular (s : SignedMeasure α) (μ : Measure α) : s.toJordanDecomposition.posPart.singularPart μ ⟂ₘ s.toJordanDecomposition.negPart.singularPart μ := by by_cases hl : s.HaveLebesgueDecomposition μ · obtain ⟨i, hi, hpos, hneg⟩ := s.toJordanDecomposition.mutuallySingular rw [s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ] at hpos rw [s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ] at hneg rw [add_apply, add_eq_zero_iff] at hpos hneg exact ⟨i, hi, hpos.1, hneg.1⟩ · rw [not_haveLebesgueDecomposition_iff] at hl cases' hl with hp hn · rw [Measure.singularPart, dif_neg hp] exact MutuallySingular.zero_left · rw [Measure.singularPart, Measure.singularPart, dif_neg hn] exact MutuallySingular.zero_right #align measure_theory.signed_measure.singular_part_mutually_singular MeasureTheory.SignedMeasure.singularPart_mutuallySingular theorem singularPart_totalVariation (s : SignedMeasure α) (μ : Measure α) : (s.singularPart μ).totalVariation = s.toJordanDecomposition.posPart.singularPart μ + s.toJordanDecomposition.negPart.singularPart μ := by have : (s.singularPart μ).toJordanDecomposition = ⟨s.toJordanDecomposition.posPart.singularPart μ, s.toJordanDecomposition.negPart.singularPart μ, singularPart_mutuallySingular s μ⟩ := by refine' JordanDecomposition.toSignedMeasure_injective _ rw [toSignedMeasure_toJordanDecomposition, singularPart, JordanDecomposition.toSignedMeasure] · rw [totalVariation, this] #align measure_theory.signed_measure.singular_part_total_variation MeasureTheory.SignedMeasure.singularPart_totalVariation nonrec theorem mutuallySingular_singularPart (s : SignedMeasure α) (μ : Measure α) : singularPart s μ ⟂ᵥ μ.toENNRealVectorMeasure := by rw [mutuallySingular_ennreal_iff, singularPart_totalVariation, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] exact (mutuallySingular_singularPart _ _).add_left (mutuallySingular_singularPart _ _) #align measure_theory.signed_measure.mutually_singular_singular_part MeasureTheory.SignedMeasure.mutuallySingular_singularPart end /-- The Radon-Nikodym derivative between a signed measure and a positive measure. `rnDeriv s μ` satisfies `μ.withDensityᵥ (s.rnDeriv μ) = s` if and only if `s` is absolutely continuous with respect to `μ` and this fact is known as `MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensity_rnDeriv_eq` and can be found in `MeasureTheory.Decomposition.RadonNikodym`. -/ def rnDeriv (s : SignedMeasure α) (μ : Measure α) : α → ℝ := fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal #align measure_theory.signed_measure.rn_deriv MeasureTheory.SignedMeasure.rnDeriv -- Porting note: The generated equation theorem is the form of `rnDeriv s μ x`. theorem rnDeriv_def (s : SignedMeasure α) (μ : Measure α) : rnDeriv s μ = fun x => (s.toJordanDecomposition.posPart.rnDeriv μ x).toReal - (s.toJordanDecomposition.negPart.rnDeriv μ x).toReal := rfl attribute [eqns rnDeriv_def] rnDeriv variable {s t : SignedMeasure α} @[measurability] theorem measurable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Measurable (rnDeriv s μ) := by rw [rnDeriv] measurability #align measure_theory.signed_measure.measurable_rn_deriv MeasureTheory.SignedMeasure.measurable_rnDeriv theorem integrable_rnDeriv (s : SignedMeasure α) (μ : Measure α) : Integrable (rnDeriv s μ) μ := by refine' Integrable.sub _ _ <;> · constructor · apply Measurable.aestronglyMeasurable; measurability exact hasFiniteIntegral_toReal_of_lintegral_ne_top (lintegral_rnDeriv_lt_top _ μ).ne #align measure_theory.signed_measure.integrable_rn_deriv MeasureTheory.SignedMeasure.integrable_rnDeriv variable (s μ) /-- **The Lebesgue Decomposition theorem between a signed measure and a measure**: Given a signed measure `s` and a σ-finite measure `μ`, there exist a signed measure `t` and a measurable and integrable function `f`, such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`. In this case `t = s.singularPart μ` and `f = s.rnDeriv μ`. -/ theorem singularPart_add_withDensity_rnDeriv_eq [s.HaveLebesgueDecomposition μ] : s.singularPart μ + μ.withDensityᵥ (s.rnDeriv μ) = s := by conv_rhs => rw [← toSignedMeasure_toJordanDecomposition s, JordanDecomposition.toSignedMeasure] rw [singularPart, rnDeriv, withDensityᵥ_sub' (integrable_toReal_of_lintegral_ne_top _ _) (integrable_toReal_of_lintegral_ne_top _ _), withDensityᵥ_toReal, withDensityᵥ_toReal, sub_eq_add_neg, sub_eq_add_neg, add_comm (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure, ← add_assoc, add_assoc (-(s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure), ← toSignedMeasure_add, add_comm, ← add_assoc, ← neg_add, ← toSignedMeasure_add, add_comm, ← sub_eq_add_neg] convert rfl -- `convert rfl` much faster than `congr` · exact s.toJordanDecomposition.posPart.haveLebesgueDecomposition_add μ · rw [add_comm] exact s.toJordanDecomposition.negPart.haveLebesgueDecomposition_add μ all_goals first | exact (lintegral_rnDeriv_lt_top _ _).ne | measurability #align measure_theory.signed_measure.singular_part_add_with_density_rn_deriv_eq MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq variable {s μ} theorem jordanDecomposition_add_withDensity_mutuallySingular {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) : (t.toJordanDecomposition.posPart + μ.withDensity fun x : α => ENNReal.ofReal (f x)) ⟂ₘ t.toJordanDecomposition.negPart + μ.withDensity fun x : α => ENNReal.ofReal (-f x) := by rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ exact ((JordanDecomposition.mutuallySingular _).add_right (htμ.1.mono_ac (refl _) (withDensity_absolutelyContinuous _ _))).add_left ((htμ.2.symm.mono_ac (withDensity_absolutelyContinuous _ _) (refl _)).add_right (withDensity_ofReal_mutuallySingular hf)) #align measure_theory.signed_measure.jordan_decomposition_add_with_density_mutually_singular MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular theorem toJordanDecomposition_eq_of_eq_add_withDensity {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.toJordanDecomposition = @JordanDecomposition.mk α _ (t.toJordanDecomposition.posPart + μ.withDensity fun x => ENNReal.ofReal (f x)) (t.toJordanDecomposition.negPart + μ.withDensity fun x => ENNReal.ofReal (-f x)) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.2; infer_instance) (by haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2; infer_instance) (jordanDecomposition_add_withDensity_mutuallySingular hf htμ) := by haveI := isFiniteMeasure_withDensity_ofReal hfi.2 haveI := isFiniteMeasure_withDensity_ofReal hfi.neg.2 refine' toJordanDecomposition_eq _ simp_rw [JordanDecomposition.toSignedMeasure, hadd] ext i hi rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi, toSignedMeasure_apply_measurable hi, add_apply, add_apply, ENNReal.toReal_add, ENNReal.toReal_add, add_sub_add_comm, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, ← VectorMeasure.sub_apply, ← JordanDecomposition.toSignedMeasure, toSignedMeasure_toJordanDecomposition, VectorMeasure.add_apply, ← toSignedMeasure_apply_measurable hi, ← toSignedMeasure_apply_measurable hi, withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part hfi, VectorMeasure.sub_apply] <;> exact (measure_lt_top _ _).ne #align measure_theory.signed_measure.to_jordan_decomposition_eq_of_eq_add_with_density MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity private theorem haveLebesgueDecomposition_mk' (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff] at htμ change _ ⟂ₘ VectorMeasure.equivMeasure.toFun (VectorMeasure.equivMeasure.invFun μ) at htμ rw [VectorMeasure.equivMeasure.right_inv, totalVariation_mutuallySingular_iff] at htμ refine' { posPart := by use ⟨t.toJordanDecomposition.posPart, fun x => ENNReal.ofReal (f x)⟩ refine' ⟨hf.ennreal_ofReal, htμ.1, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] negPart := by use ⟨t.toJordanDecomposition.negPart, fun x => ENNReal.ofReal (-f x)⟩ refine' ⟨hf.neg.ennreal_ofReal, htμ.2, _⟩ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] } theorem haveLebesgueDecomposition_mk (μ : Measure α) {f : α → ℝ} (hf : Measurable f) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : s.HaveLebesgueDecomposition μ := by by_cases hfi : Integrable f μ · exact haveLebesgueDecomposition_mk' μ hf hfi htμ hadd · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' haveLebesgueDecomposition_mk' μ measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.have_lebesgue_decomposition_mk MeasureTheory.SignedMeasure.haveLebesgueDecomposition_mk private theorem eq_singularPart' (t : SignedMeasure α) {f : α → ℝ} (hf : Measurable f) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by have htμ' := htμ rw [mutuallySingular_ennreal_iff, totalVariation_mutuallySingular_iff, VectorMeasure.ennrealToMeasure_toENNRealVectorMeasure] at htμ rw [singularPart, ← t.toSignedMeasure_toJordanDecomposition, JordanDecomposition.toSignedMeasure] congr · have hfpos : Measurable fun x => ENNReal.ofReal (f x) := by measurability refine' eq_singularPart hfpos htμ.1 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] · have hfneg : Measurable fun x => ENNReal.ofReal (-f x) := by measurability refine' eq_singularPart hfneg htμ.2 _ rw [toJordanDecomposition_eq_of_eq_add_withDensity hf hfi htμ' hadd] /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `t = singularPart s μ`, i.e. `t` is the singular part of the Lebesgue decomposition between `s` and `μ`. -/ theorem eq_singularPart (t : SignedMeasure α) (f : α → ℝ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : t = s.singularPart μ := by by_cases hfi : Integrable f μ · refine' eq_singularPart' t hfi.1.measurable_mk (hfi.congr hfi.1.ae_eq_mk) htμ _ convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm · rw [withDensityᵥ, dif_neg hfi, add_zero] at hadd refine' eq_singularPart' t measurable_zero (integrable_zero _ _ μ) htμ _ rwa [withDensityᵥ_zero, add_zero] #align measure_theory.signed_measure.eq_singular_part MeasureTheory.SignedMeasure.eq_singularPart theorem singularPart_zero (μ : Measure α) : (0 : SignedMeasure α).singularPart μ = 0 := by refine' (eq_singularPart 0 0 VectorMeasure.MutuallySingular.zero_left _).symm rw [zero_add, withDensityᵥ_zero] #align measure_theory.signed_measure.singular_part_zero MeasureTheory.SignedMeasure.singularPart_zero theorem singularPart_neg (s : SignedMeasure α) (μ : Measure α) : (-s).singularPart μ = -s.singularPart μ := by have h₁ : ((-s).toJordanDecomposition.posPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.negPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_posPart] have h₂ : ((-s).toJordanDecomposition.negPart.singularPart μ).toSignedMeasure = (s.toJordanDecomposition.posPart.singularPart μ).toSignedMeasure := by refine' toSignedMeasure_congr _ rw [toJordanDecomposition_neg, JordanDecomposition.neg_negPart] rw [singularPart, singularPart, neg_sub, h₁, h₂] #align measure_theory.signed_measure.singular_part_neg MeasureTheory.SignedMeasure.singularPart_neg theorem singularPart_smul_nnreal (s : SignedMeasure α) (μ : Measure α) (r : ℝ≥0) : (r • s).singularPart μ = r • s.singularPart μ := by rw [singularPart, singularPart, smul_sub, ← toSignedMeasure_smul, ← toSignedMeasure_smul] conv_lhs => congr · congr · rw [toJordanDecomposition_smul, JordanDecomposition.smul_posPart, singularPart_smul] · congr rw [toJordanDecomposition_smul, JordanDecomposition.smul_negPart, singularPart_smul] #align measure_theory.signed_measure.singular_part_smul_nnreal MeasureTheory.SignedMeasure.singularPart_smul_nnreal nonrec theorem singularPart_smul (s : SignedMeasure α) (μ : Measure α) (r : ℝ) : (r • s).singularPart μ = r • s.singularPart μ := by cases le_or_lt 0 r with | inl hr => lift r to ℝ≥0 using hr exact singularPart_smul_nnreal s μ r | inr hr => rw [singularPart, singularPart] conv_lhs => congr · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_posPart_neg _ _ hr, singularPart_smul] · congr · rw [toJordanDecomposition_smul_real, JordanDecomposition.real_smul_negPart_neg _ _ hr, singularPart_smul] rw [toSignedMeasure_smul, toSignedMeasure_smul, ← neg_sub, ← smul_sub, NNReal.smul_def, ← neg_smul, Real.coe_toNNReal _ (le_of_lt (neg_pos.mpr hr)), neg_neg] #align measure_theory.signed_measure.singular_part_smul MeasureTheory.SignedMeasure.singularPart_smul theorem singularPart_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s + t).singularPart μ = s.singularPart μ + t.singularPart μ := by refine' (eq_singularPart _ (s.rnDeriv μ + t.rnDeriv μ) ((mutuallySingular_singularPart s μ).add_left (mutuallySingular_singularPart t μ)) _).symm rw [withDensityᵥ_add (integrable_rnDeriv s μ) (integrable_rnDeriv t μ), add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.singular_part_add MeasureTheory.SignedMeasure.singularPart_add theorem singularPart_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] : (s - t).singularPart μ = s.singularPart μ - t.singularPart μ := by rw [sub_eq_add_neg, sub_eq_add_neg, singularPart_add, singularPart_neg] #align measure_theory.signed_measure.singular_part_sub MeasureTheory.SignedMeasure.singularPart_sub /-- Given a measure `μ`, signed measures `s` and `t`, and a function `f` such that `t` is mutually singular with respect to `μ` and `s = t + μ.withDensityᵥ f`, we have `f = rnDeriv s μ`, i.e. `f` is the Radon-Nikodym derivative of `s` and `μ`. -/ theorem eq_rnDeriv (t : SignedMeasure α) (f : α → ℝ) (hfi : Integrable f μ) (htμ : t ⟂ᵥ μ.toENNRealVectorMeasure) (hadd : s = t + μ.withDensityᵥ f) : f =ᵐ[μ] s.rnDeriv μ := by set f' := hfi.1.mk f have hadd' : s = t + μ.withDensityᵥ f' := by convert hadd using 2 exact WithDensityᵥEq.congr_ae hfi.1.ae_eq_mk.symm have := haveLebesgueDecomposition_mk μ hfi.1.measurable_mk htμ hadd' refine' (Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) hfi _).symm rw [← add_right_inj t, ← hadd, eq_singularPart _ f htμ hadd, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.eq_rn_deriv MeasureTheory.SignedMeasure.eq_rnDeriv theorem rnDeriv_neg (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] : (-s).rnDeriv μ =ᵐ[μ] -s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) (integrable_rnDeriv _ _).neg _ rw [withDensityᵥ_neg, ← add_right_inj ((-s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_neg, ← neg_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_neg MeasureTheory.SignedMeasure.rnDeriv_neg theorem rnDeriv_smul (s : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] (r : ℝ) : (r • s).rnDeriv μ =ᵐ[μ] r • s.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).smul r) _ rw [withDensityᵥ_smul (rnDeriv s μ) r, ← add_right_inj ((r • s).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, singularPart_smul, ← smul_add, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_smul MeasureTheory.SignedMeasure.rnDeriv_smul theorem rnDeriv_add (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [(s + t).HaveLebesgueDecomposition μ] : (s + t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ + t.rnDeriv μ := by refine' Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _) ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _ rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq, withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add, add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ), singularPart_add_withDensity_rnDeriv_eq, ← add_assoc, singularPart_add_withDensity_rnDeriv_eq] #align measure_theory.signed_measure.rn_deriv_add MeasureTheory.SignedMeasure.rnDeriv_add theorem rnDeriv_sub (s t : SignedMeasure α) (μ : Measure α) [s.HaveLebesgueDecomposition μ] [t.HaveLebesgueDecomposition μ] [hst : (s - t).HaveLebesgueDecomposition μ] : (s - t).rnDeriv μ =ᵐ[μ] s.rnDeriv μ - t.rnDeriv μ := by rw [sub_eq_add_neg] at hst rw [sub_eq_add_neg, sub_eq_add_neg] exact ae_eq_trans (rnDeriv_add _ _ _) (Filter.EventuallyEq.add (ae_eq_refl _) (rnDeriv_neg _ _)) #align measure_theory.signed_measure.rn_deriv_sub MeasureTheory.SignedMeasure.rnDeriv_sub end SignedMeasure namespace ComplexMeasure /-- A complex measure is said to `HaveLebesgueDecomposition` with respect to a positive measure if both its real and imaginary part `HaveLebesgueDecomposition` with respect to that measure. -/ class HaveLebesgueDecomposition (c : ComplexMeasure α) (μ : Measure α) : Prop where rePart : c.re.HaveLebesgueDecomposition μ imPart : c.im.HaveLebesgueDecomposition μ #align measure_theory.complex_measure.have_lebesgue_decomposition MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition #align measure_theory.complex_measure.have_lebesgue_decomposition.re_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart #align measure_theory.complex_measure.have_lebesgue_decomposition.im_part MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart attribute [instance] HaveLebesgueDecomposition.rePart attribute [instance] HaveLebesgueDecomposition.imPart /-- The singular part between a complex measure `c` and a positive measure `μ` is the complex measure satisfying `c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c`. This property is given by `MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq`. -/ def singularPart (c : ComplexMeasure α) (μ : Measure α) : ComplexMeasure α := (c.re.singularPart μ).toComplexMeasure (c.im.singularPart μ) #align measure_theory.complex_measure.singular_part MeasureTheory.ComplexMeasure.singularPart /-- The Radon-Nikodym derivative between a complex measure and a positive measure. -/ def rnDeriv (c : ComplexMeasure α) (μ : Measure α) : α → ℂ := fun x => ⟨c.re.rnDeriv μ x, c.im.rnDeriv μ x⟩ #align measure_theory.complex_measure.rn_deriv MeasureTheory.ComplexMeasure.rnDeriv variable {c : ComplexMeasure α} theorem integrable_rnDeriv (c : ComplexMeasure α) (μ : Measure α) : Integrable (c.rnDeriv μ) μ := by rw [← memℒp_one_iff_integrable, ← memℒp_re_im_iff] exact ⟨memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _), memℒp_one_iff_integrable.2 (SignedMeasure.integrable_rnDeriv _ _)⟩ #align measure_theory.complex_measure.integrable_rn_deriv MeasureTheory.ComplexMeasure.integrable_rnDeriv theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] · change (c.im.singularPart μ + μ.withDensityᵥ (c.im.rnDeriv μ)) i = _ rw [c.im.singularPart_add_withDensity_rnDeriv_eq μ] ·
exact SignedMeasure.integrable_rnDeriv _ _
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c := by conv_rhs => rw [← c.toComplexMeasure_to_signedMeasure] ext i hi : 1 rw [VectorMeasure.add_apply, SignedMeasure.toComplexMeasure_apply] apply Complex.ext · rw [Complex.add_re, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.re_eq_complex_re, ← integral_re (c.integrable_rnDeriv μ).integrableOn, IsROrC.re_eq_complex_re, ← withDensityᵥ_apply _ hi] · change (c.re.singularPart μ + μ.withDensityᵥ (c.re.rnDeriv μ)) i = _ rw [c.re.singularPart_add_withDensity_rnDeriv_eq μ] · exact SignedMeasure.integrable_rnDeriv _ _ · rw [Complex.add_im, withDensityᵥ_apply (c.integrable_rnDeriv μ) hi, ← IsROrC.im_eq_complex_im, ← integral_im (c.integrable_rnDeriv μ).integrableOn, IsROrC.im_eq_complex_im, ← withDensityᵥ_apply _ hi] · change (c.im.singularPart μ + μ.withDensityᵥ (c.im.rnDeriv μ)) i = _ rw [c.im.singularPart_add_withDensity_rnDeriv_eq μ] ·
Mathlib.MeasureTheory.Decomposition.SignedLebesgue.496_0.HPGboz0rhL6sBes
theorem singularPart_add_withDensity_rnDeriv_eq [c.HaveLebesgueDecomposition μ] : c.singularPart μ + μ.withDensityᵥ (c.rnDeriv μ) = c
Mathlib_MeasureTheory_Decomposition_SignedLebesgue
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B ⊢ Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by
ext v
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by
Mathlib.Topology.VectorBundle.Constructions.48_0.ZrgS90NPsSlDzPQ
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F
Mathlib_Topology_VectorBundle_Constructions
case h.h 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ (Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b) v = (ContinuousLinearEquiv.refl 𝕜 F) v
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v
rw [Trivialization.coordChangeL_apply']
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v
Mathlib.Topology.VectorBundle.Constructions.48_0.ZrgS90NPsSlDzPQ
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F
Mathlib_Topology_VectorBundle_Constructions
case h.h 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ (↑(trivialization B F) (↑(PartialHomeomorph.symm (trivialization B F).toPartialHomeomorph) (b, v))).2 = (ContinuousLinearEquiv.refl 𝕜 F) v case h.h.hb 𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B b : B v : F ⊢ b ∈ (trivialization B F).baseSet ∩ (trivialization B F).baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply']
exacts [rfl, ⟨mem_univ _, mem_univ _⟩]
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply']
Mathlib.Topology.VectorBundle.Constructions.48_0.ZrgS90NPsSlDzPQ
theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 e
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by
rw [eq_trivialization B F e]
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 (trivialization B F)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e]
infer_instance
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e]
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e e' : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e he' : MemTrivializationAtlas e' ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by
obtain rfl := eq_trivialization B F e
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' he : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (trivialization B F) e' b)) ((trivialization B F).baseSet ∩ e'.baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e
obtain rfl := eq_trivialization B F e'
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B he he' : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (trivialization B F) (trivialization B F) b)) ((trivialization B F).baseSet ∩ (trivialization B F).baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e'
simp only [trivialization.coordChangeL]
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e'
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 F : Type u_3 inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B he he' : MemTrivializationAtlas (trivialization B F) ⊢ ContinuousOn (fun b => ↑(ContinuousLinearEquiv.refl 𝕜 F)) ((trivialization B F).baseSet ∩ (trivialization B F).baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL]
exact continuous_const.continuousOn
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL]
Mathlib.Topology.VectorBundle.Constructions.59_0.ZrgS90NPsSlDzPQ
instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet ⊢ ↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) = ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' b) ↑(coordChangeL 𝕜 e₂ e₂' b)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by
rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap']
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by
Mathlib.Topology.VectorBundle.Constructions.93_0.ZrgS90NPsSlDzPQ
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b)
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet ⊢ ∀ (x : F₁ × F₂), ↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) x = Prod.map (⇑↑(coordChangeL 𝕜 e₁ e₁' b)) (⇑↑(coordChangeL 𝕜 e₂ e₂' b)) x
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap']
rintro ⟨v₁, v₂⟩
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap']
Mathlib.Topology.VectorBundle.Constructions.93_0.ZrgS90NPsSlDzPQ
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b)
Mathlib_Topology_VectorBundle_Constructions
case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ ↑(coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) (v₁, v₂) = Prod.map ⇑↑(coordChangeL 𝕜 e₁ e₁' b) ⇑↑(coordChangeL 𝕜 e₂ e₂' b) (v₁, v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩
show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩
Mathlib.Topology.VectorBundle.Constructions.93_0.ZrgS90NPsSlDzPQ
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b)
Mathlib_Topology_VectorBundle_Constructions
case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ (coordChangeL 𝕜 (prod e₁ e₂) (prod e₁' e₂') b) (v₁, v₂) = ((coordChangeL 𝕜 e₁ e₁' b) v₁, (coordChangeL 𝕜 e₂ e₂' b) v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
Mathlib.Topology.VectorBundle.Constructions.93_0.ZrgS90NPsSlDzPQ
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b)
Mathlib_Topology_VectorBundle_Constructions
case mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ (↑(prod e₁' e₂') (↑(PartialHomeomorph.symm (prod e₁ e₂).toPartialHomeomorph) (b, v₁, v₂))).2 = ((↑e₁' { proj := b, snd := Trivialization.symm e₁ b v₁ }).2, (↑e₂' { proj := b, snd := Trivialization.symm e₂ b v₂ }).2) case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₂.baseSet ∩ e₂'.baseSet case mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁵ : NontriviallyNormedField 𝕜 inst✝¹⁴ : TopologicalSpace B F₁ : Type u_3 inst✝¹³ : NormedAddCommGroup F₁ inst✝¹² : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹¹ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹⁰ : NormedAddCommGroup F₂ inst✝⁹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝⁸ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁷ : (x : B) → AddCommMonoid (E₁ x) inst✝⁶ : (x : B) → Module 𝕜 (E₁ x) inst✝⁵ : (x : B) → AddCommMonoid (E₂ x) inst✝⁴ : (x : B) → Module 𝕜 (E₂ x) e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝³ : Trivialization.IsLinear 𝕜 e₁ inst✝² : Trivialization.IsLinear 𝕜 e₁' inst✝¹ : Trivialization.IsLinear 𝕜 e₂ inst✝ : Trivialization.IsLinear 𝕜 e₂' b : B hb : b ∈ (prod e₁ e₂).baseSet ∩ (prod e₁' e₂').baseSet v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₁.baseSet ∩ e₁'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩]
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
Mathlib.Topology.VectorBundle.Constructions.93_0.ZrgS90NPsSlDzPQ
@[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b)
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ ⊢ ∀ (e : Trivialization (F₁ × F₂) TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear 𝕜 e
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by
rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ Trivialization.IsLinear 𝕜 (Trivialization.prod e₁ e₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩;
skip
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩;
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ Trivialization.IsLinear 𝕜 (Trivialization.prod e₁ e₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip
infer_instance
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ ⊢ ∀ (e e' : Trivialization (F₁ × F₂) TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by
rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ ContinuousOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩;
skip
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩;
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ ContinuousOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip
refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet ⊆ e₁.baseSet ∩ e₁'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
dsimp only [baseSet_prod, mfld_simps]
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet ⊆ e₂.baseSet ∩ e₂'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
dsimp only [baseSet_prod, mfld_simps]
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ EqOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) ((Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
dsimp only [baseSet_prod, mfld_simps]
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;>
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₁.baseSet ∩ e₁'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] ·
mfld_set_tac
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] ·
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₂.baseSet ∩ e₂'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac ·
mfld_set_tac
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac ·
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ EqOn (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet))
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac ·
rintro b hb
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac ·
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊢ (fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b = (fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb
rw [ContinuousLinearMap.ext_iff]
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊢ ∀ (x : F₁ × F₂), ((fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b) x = ((fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b) x
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff]
rintro ⟨v₁, v₂⟩
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff]
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ ((fun b => ↑(coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b)) b) (v₁, v₂) = ((fun x => ContinuousLinearMap.prodMap ↑(coordChangeL 𝕜 e₁ e₁' x) ↑(coordChangeL 𝕜 e₂ e₂' x)) b) (v₁, v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩
show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ (coordChangeL 𝕜 (Trivialization.prod e₁ e₂) (Trivialization.prod e₁' e₂') b) (v₁, v₂) = ((coordChangeL 𝕜 e₁ e₁' b) v₁, (coordChangeL 𝕜 e₂ e₂' b) v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂)
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ (↑(Trivialization.prod e₁' e₂') (↑(PartialHomeomorph.symm (Trivialization.prod e₁ e₂).toPartialHomeomorph) (b, v₁, v₂))).2 = ((↑e₁' { proj := b, snd := Trivialization.symm e₁ b v₁ }).2, (↑e₂' { proj := b, snd := Trivialization.symm e₂ b v₂ }).2) case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ (Trivialization.prod e₁ e₂).baseSet ∩ (Trivialization.prod e₁' e₂').baseSet case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₂.baseSet ∩ e₂'.baseSet case mk.intro.intro.intro.intro.mk.intro.intro.intro.intro.refine'_3.mk.hb 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ inst✝¹ : VectorBundle 𝕜 F₁ E₁ inst✝ : VectorBundle 𝕜 F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) v₁ : F₁ v₂ : F₂ ⊢ b ∈ e₁.baseSet ∩ e₁'.baseSet
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩]
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply']
Mathlib.Topology.VectorBundle.Constructions.126_0.ZrgS90NPsSlDzPQ
/-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet ⊢ continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx = ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by
ext v : 2
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by
Mathlib.Topology.VectorBundle.Constructions.150_0.ZrgS90NPsSlDzPQ
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2)
Mathlib_Topology_VectorBundle_Constructions
case h.h 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v : E₁ x × E₂ x ⊢ (continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx) v = (ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) v
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2
obtain ⟨v₁, v₂⟩ := v
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2
Mathlib.Topology.VectorBundle.Constructions.150_0.ZrgS90NPsSlDzPQ
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2)
Mathlib_Topology_VectorBundle_Constructions
case h.h.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v₁ : E₁ x v₂ : E₂ x ⊢ (continuousLinearEquivAt 𝕜 (prod e₁ e₂) x hx) (v₁, v₂) = (ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) (v₁, v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v
rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod]
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v
Mathlib.Topology.VectorBundle.Constructions.150_0.ZrgS90NPsSlDzPQ
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2)
Mathlib_Topology_VectorBundle_Constructions
case h.h.mk 𝕜 : Type u_1 B : Type u_2 inst✝¹⁷ : NontriviallyNormedField 𝕜 inst✝¹⁶ : TopologicalSpace B F₁ : Type u_3 inst✝¹⁵ : NormedAddCommGroup F₁ inst✝¹⁴ : NormedSpace 𝕜 F₁ E₁ : B → Type u_4 inst✝¹³ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_5 inst✝¹² : NormedAddCommGroup F₂ inst✝¹¹ : NormedSpace 𝕜 F₂ E₂ : B → Type u_6 inst✝¹⁰ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁹ : (x : B) → AddCommMonoid (E₁ x) inst✝⁸ : (x : B) → Module 𝕜 (E₁ x) inst✝⁷ : (x : B) → AddCommMonoid (E₂ x) inst✝⁶ : (x : B) → Module 𝕜 (E₂ x) inst✝⁵ : (x : B) → TopologicalSpace (E₁ x) inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₁ E₁ inst✝² : FiberBundle F₂ E₂ e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : Trivialization.IsLinear 𝕜 e₁ inst✝ : Trivialization.IsLinear 𝕜 e₂ x : B hx : x ∈ (prod e₁ e₂).baseSet v₁ : E₁ x v₂ : E₂ x ⊢ (fun y => (↑{ toPartialHomeomorph := { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }, baseSet := e₁.baseSet ∩ e₂.baseSet, open_baseSet := (_ : IsOpen (e₁.baseSet ∩ e₂.baseSet)), source_eq := (_ : { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toPartialEquiv.source = { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toPartialEquiv.source), target_eq := (_ : { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toPartialEquiv.target = { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toPartialEquiv.target), proj_toFun := (_ : ∀ x ∈ { toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) }.toPartialEquiv.source, (↑{ toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) } x).1 = (↑{ toPartialEquiv := { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }, open_source := (_ : IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), (Prod.toFun' e₁ e₂ x).1 ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).2 ∈ univ), map_target' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, x.1 ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source), open_target := (_ : IsOpen ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)), continuousOn_toFun := (_ : ContinuousOn (Prod.toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet))), continuousOn_invFun := (_ : ContinuousOn (Prod.invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ)) } x).1) } { proj := x, snd := y }).2) (v₁, v₂) = (ContinuousLinearEquiv.prod (continuousLinearEquivAt 𝕜 e₁ x (_ : x ∈ e₁.baseSet)) (continuousLinearEquivAt 𝕜 e₂ x (_ : x ∈ e₂.baseSet))) (v₁, v₂)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod]
exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _)
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod]
Mathlib.Topology.VectorBundle.Constructions.150_0.ZrgS90NPsSlDzPQ
@[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2)
Mathlib_Topology_VectorBundle_Constructions
R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K ⊢ ∀ (e : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e], Trivialization.IsLinear 𝕜 e
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) #align trivialization.continuous_linear_equiv_at_prod Trivialization.continuousLinearEquivAt_prodₓ end /-! ### Pullbacks of vector bundles -/ section variable (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) {B' : Type*} (f : B' → B) instance [i : ∀ x : B, AddCommMonoid (E x)] (x : B') : AddCommMonoid ((f *ᵖ E) x) := i _ instance [Semiring R] [∀ x : B, AddCommMonoid (E x)] [i : ∀ x, Module R (E x)] (x : B') : Module R ((f *ᵖ E) x) := i _ variable {E F} [TopologicalSpace B'] [TopologicalSpace (TotalSpace F E)] [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] [∀ x, AddCommMonoid (E x)] [∀ x, Module 𝕜 (E x)] {K : Type*} [ContinuousMapClass K B' B] instance Trivialization.pullback_linear (e : Trivialization F (π F E)) [e.IsLinear 𝕜] (f : K) : (@Trivialization.pullback _ _ _ B' _ _ _ _ _ _ _ e f).IsLinear 𝕜 where linear _ h := e.linear 𝕜 h #align trivialization.pullback_linear Trivialization.pullback_linear instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by
rintro _ ⟨e, he, rfl⟩
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by
Mathlib.Topology.VectorBundle.Constructions.184_0.ZrgS90NPsSlDzPQ
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e ⊢ Trivialization.IsLinear 𝕜 (Trivialization.pullback e f)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) #align trivialization.continuous_linear_equiv_at_prod Trivialization.continuousLinearEquivAt_prodₓ end /-! ### Pullbacks of vector bundles -/ section variable (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) {B' : Type*} (f : B' → B) instance [i : ∀ x : B, AddCommMonoid (E x)] (x : B') : AddCommMonoid ((f *ᵖ E) x) := i _ instance [Semiring R] [∀ x : B, AddCommMonoid (E x)] [i : ∀ x, Module R (E x)] (x : B') : Module R ((f *ᵖ E) x) := i _ variable {E F} [TopologicalSpace B'] [TopologicalSpace (TotalSpace F E)] [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] [∀ x, AddCommMonoid (E x)] [∀ x, Module 𝕜 (E x)] {K : Type*} [ContinuousMapClass K B' B] instance Trivialization.pullback_linear (e : Trivialization F (π F E)) [e.IsLinear 𝕜] (f : K) : (@Trivialization.pullback _ _ _ B' _ _ _ _ _ _ _ e f).IsLinear 𝕜 where linear _ h := e.linear 𝕜 h #align trivialization.pullback_linear Trivialization.pullback_linear instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩
infer_instance
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩
Mathlib.Topology.VectorBundle.Constructions.184_0.ZrgS90NPsSlDzPQ
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K ⊢ ∀ (e e' : Trivialization F TotalSpace.proj) [inst : MemTrivializationAtlas e] [inst_1 : MemTrivializationAtlas e'], ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) (e.baseSet ∩ e'.baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) #align trivialization.continuous_linear_equiv_at_prod Trivialization.continuousLinearEquivAt_prodₓ end /-! ### Pullbacks of vector bundles -/ section variable (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) {B' : Type*} (f : B' → B) instance [i : ∀ x : B, AddCommMonoid (E x)] (x : B') : AddCommMonoid ((f *ᵖ E) x) := i _ instance [Semiring R] [∀ x : B, AddCommMonoid (E x)] [i : ∀ x, Module R (E x)] (x : B') : Module R ((f *ᵖ E) x) := i _ variable {E F} [TopologicalSpace B'] [TopologicalSpace (TotalSpace F E)] [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] [∀ x, AddCommMonoid (E x)] [∀ x, Module 𝕜 (E x)] {K : Type*} [ContinuousMapClass K B' B] instance Trivialization.pullback_linear (e : Trivialization F (π F E)) [e.IsLinear 𝕜] (f : K) : (@Trivialization.pullback _ _ _ B' _ _ _ _ _ _ _ e f).IsLinear 𝕜 where linear _ h := e.linear 𝕜 h #align trivialization.pullback_linear Trivialization.pullback_linear instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by
rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by
Mathlib.Topology.VectorBundle.Constructions.184_0.ZrgS90NPsSlDzPQ
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' ⊢ ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) ((Trivialization.pullback e f).baseSet ∩ (Trivialization.pullback e' f).baseSet)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) #align trivialization.continuous_linear_equiv_at_prod Trivialization.continuousLinearEquivAt_prodₓ end /-! ### Pullbacks of vector bundles -/ section variable (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) {B' : Type*} (f : B' → B) instance [i : ∀ x : B, AddCommMonoid (E x)] (x : B') : AddCommMonoid ((f *ᵖ E) x) := i _ instance [Semiring R] [∀ x : B, AddCommMonoid (E x)] [i : ∀ x, Module R (E x)] (x : B') : Module R ((f *ᵖ E) x) := i _ variable {E F} [TopologicalSpace B'] [TopologicalSpace (TotalSpace F E)] [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] [∀ x, AddCommMonoid (E x)] [∀ x, Module 𝕜 (E x)] {K : Type*} [ContinuousMapClass K B' B] instance Trivialization.pullback_linear (e : Trivialization F (π F E)) [e.IsLinear 𝕜] (f : K) : (@Trivialization.pullback _ _ _ B' _ _ _ _ _ _ _ e f).IsLinear 𝕜 where linear _ h := e.linear 𝕜 h #align trivialization.pullback_linear Trivialization.pullback_linear instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩
refine' ((continuousOn_coordChange 𝕜 e e').comp (map_continuous f).continuousOn fun b hb => hb).congr _
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩
Mathlib.Topology.VectorBundle.Constructions.184_0.ZrgS90NPsSlDzPQ
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions
case mk.intro.intro.mk.intro.intro R : Type u_1 𝕜 : Type u_2 B : Type u_3 F : Type u_4 E : B → Type u_5 B' : Type u_6 f✝ : B' → B inst✝¹¹ : TopologicalSpace B' inst✝¹⁰ : TopologicalSpace (TotalSpace F E) inst✝⁹ : NontriviallyNormedField 𝕜 inst✝⁸ : NormedAddCommGroup F inst✝⁷ : NormedSpace 𝕜 F inst✝⁶ : TopologicalSpace B inst✝⁵ : (x : B) → AddCommMonoid (E x) inst✝⁴ : (x : B) → Module 𝕜 (E x) K : Type u_7 inst✝³ : ContinuousMapClass K B' B inst✝² : (x : B) → TopologicalSpace (E x) inst✝¹ : FiberBundle F E inst✝ : VectorBundle 𝕜 F E f : K e : Trivialization F TotalSpace.proj he : MemTrivializationAtlas e e' : Trivialization F TotalSpace.proj he' : MemTrivializationAtlas e' ⊢ EqOn (fun b => ↑(Trivialization.coordChangeL 𝕜 (Trivialization.pullback e f) (Trivialization.pullback e' f) b)) ((fun b => ↑(Trivialization.coordChangeL 𝕜 e e' b)) ∘ ⇑f) fun b => (e.baseSet ∩ e'.baseSet) (f b)
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sébastien Gouëzel, Heather Macbeth, Floris van Doorn -/ import Mathlib.Topology.FiberBundle.Constructions import Mathlib.Topology.VectorBundle.Basic #align_import topology.vector_bundle.constructions from "leanprover-community/mathlib"@"e473c3198bb41f68560cab68a0529c854b618833" /-! # Standard constructions on vector bundles This file contains several standard constructions on vector bundles: * `Bundle.Trivial.vectorBundle 𝕜 B F`: the trivial vector bundle with scalar field `𝕜` and model fiber `F` over the base `B` * `VectorBundle.prod`: for vector bundles `E₁` and `E₂` with scalar field `𝕜` over a common base, a vector bundle structure on their direct sum `E₁ ×ᵇ E₂` (the notation stands for `fun x ↦ E₁ x × E₂ x`). * `VectorBundle.pullback`: for a vector bundle `E` over `B`, a vector bundle structure on its pullback `f *ᵖ E` by a map `f : B' → B` (the notation is a type synonym for `E ∘ f`). ## Tags Vector bundle, direct sum, pullback -/ noncomputable section open Bundle Set FiberBundle Classical /-! ### The trivial vector bundle -/ namespace Bundle.Trivial variable (𝕜 : Type*) (B : Type*) (F : Type*) [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] instance trivialization.isLinear : (trivialization B F).IsLinear 𝕜 where linear _ _ := ⟨fun _ _ => rfl, fun _ _ => rfl⟩ #align bundle.trivial.trivialization.is_linear Bundle.Trivial.trivialization.isLinear variable {𝕜} theorem trivialization.coordChangeL (b : B) : (trivialization B F).coordChangeL 𝕜 (trivialization B F) b = ContinuousLinearEquiv.refl 𝕜 F := by ext v rw [Trivialization.coordChangeL_apply'] exacts [rfl, ⟨mem_univ _, mem_univ _⟩] set_option linter.uppercaseLean3 false in #align bundle.trivial.trivialization.coord_changeL Bundle.Trivial.trivialization.coordChangeL variable (𝕜) instance vectorBundle : VectorBundle 𝕜 F (Bundle.Trivial B F) where trivialization_linear' e he := by rw [eq_trivialization B F e] infer_instance continuousOn_coordChange' e e' he he' := by obtain rfl := eq_trivialization B F e obtain rfl := eq_trivialization B F e' simp only [trivialization.coordChangeL] exact continuous_const.continuousOn #align bundle.trivial.vector_bundle Bundle.Trivial.vectorBundle end Bundle.Trivial /-! ### Direct sum of two vector bundles -/ section variable (𝕜 : Type*) {B : Type*} [NontriviallyNormedField 𝕜] [TopologicalSpace B] (F₁ : Type*) [NormedAddCommGroup F₁] [NormedSpace 𝕜 F₁] (E₁ : B → Type*) [TopologicalSpace (TotalSpace F₁ E₁)] (F₂ : Type*) [NormedAddCommGroup F₂] [NormedSpace 𝕜 F₂] (E₂ : B → Type*) [TopologicalSpace (TotalSpace F₂ E₂)] namespace Trivialization variable {F₁ E₁ F₂ E₂} variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] (e₁ e₁' : Trivialization F₁ (π F₁ E₁)) (e₂ e₂' : Trivialization F₂ (π F₂ E₂)) instance prod.isLinear [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] : (e₁.prod e₂).IsLinear 𝕜 where linear := fun _ ⟨h₁, h₂⟩ => (((e₁.linear 𝕜 h₁).mk' _).prodMap ((e₂.linear 𝕜 h₂).mk' _)).isLinear #align trivialization.prod.is_linear Trivialization.prod.isLinear @[simp] theorem coordChangeL_prod [e₁.IsLinear 𝕜] [e₁'.IsLinear 𝕜] [e₂.IsLinear 𝕜] [e₂'.IsLinear 𝕜] ⦃b⦄ (hb : b ∈ (e₁.prod e₂).baseSet ∩ (e₁'.prod e₂').baseSet) : ((e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b : F₁ × F₂ →L[𝕜] F₁ × F₂) = (e₁.coordChangeL 𝕜 e₁' b : F₁ →L[𝕜] F₁).prodMap (e₂.coordChangeL 𝕜 e₂' b) := by rw [ContinuousLinearMap.ext_iff, ContinuousLinearMap.coe_prodMap'] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] set_option linter.uppercaseLean3 false in #align trivialization.coord_changeL_prod Trivialization.coordChangeL_prod variable {e₁ e₂} [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] theorem prod_apply [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx₁ : x ∈ e₁.baseSet) (hx₂ : x ∈ e₂.baseSet) (v₁ : E₁ x) (v₂ : E₂ x) : prod e₁ e₂ ⟨x, (v₁, v₂)⟩ = ⟨x, e₁.continuousLinearEquivAt 𝕜 x hx₁ v₁, e₂.continuousLinearEquivAt 𝕜 x hx₂ v₂⟩ := rfl #align trivialization.prod_apply Trivialization.prod_apply end Trivialization open Trivialization variable [∀ x, AddCommMonoid (E₁ x)] [∀ x, Module 𝕜 (E₁ x)] [∀ x, AddCommMonoid (E₂ x)] [∀ x, Module 𝕜 (E₂ x)] [∀ x : B, TopologicalSpace (E₁ x)] [∀ x : B, TopologicalSpace (E₂ x)] [FiberBundle F₁ E₁] [FiberBundle F₂ E₂] /-- The product of two vector bundles is a vector bundle. -/ instance VectorBundle.prod [VectorBundle 𝕜 F₁ E₁] [VectorBundle 𝕜 F₂ E₂] : VectorBundle 𝕜 (F₁ × F₂) (E₁ ×ᵇ E₂) where trivialization_linear' := by rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩; skip infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e₁, e₂, he₁, he₂, rfl⟩ ⟨e₁', e₂', he₁', he₂', rfl⟩; skip refine' (((continuousOn_coordChange 𝕜 e₁ e₁').mono _).prod_mapL 𝕜 ((continuousOn_coordChange 𝕜 e₂ e₂').mono _)).congr _ <;> dsimp only [baseSet_prod, mfld_simps] · mfld_set_tac · mfld_set_tac · rintro b hb rw [ContinuousLinearMap.ext_iff] rintro ⟨v₁, v₂⟩ show (e₁.prod e₂).coordChangeL 𝕜 (e₁'.prod e₂') b (v₁, v₂) = (e₁.coordChangeL 𝕜 e₁' b v₁, e₂.coordChangeL 𝕜 e₂' b v₂) rw [e₁.coordChangeL_apply e₁', e₂.coordChangeL_apply e₂', (e₁.prod e₂).coordChangeL_apply'] exacts [rfl, hb, ⟨hb.1.2, hb.2.2⟩, ⟨hb.1.1, hb.2.1⟩] #align vector_bundle.prod VectorBundle.prod variable {𝕜 F₁ E₁ F₂ E₂} @[simp] -- porting note: changed arguments to make `simpNF` happy: merged `hx₁` and `hx₂` into `hx` theorem Trivialization.continuousLinearEquivAt_prod {e₁ : Trivialization F₁ (π F₁ E₁)} {e₂ : Trivialization F₂ (π F₂ E₂)} [e₁.IsLinear 𝕜] [e₂.IsLinear 𝕜] {x : B} (hx : x ∈ (e₁.prod e₂).baseSet) : (e₁.prod e₂).continuousLinearEquivAt 𝕜 x hx = (e₁.continuousLinearEquivAt 𝕜 x hx.1).prod (e₂.continuousLinearEquivAt 𝕜 x hx.2) := by ext v : 2 obtain ⟨v₁, v₂⟩ := v rw [(e₁.prod e₂).continuousLinearEquivAt_apply 𝕜, Trivialization.prod] exact (congr_arg Prod.snd (prod_apply 𝕜 hx.1 hx.2 v₁ v₂) : _) #align trivialization.continuous_linear_equiv_at_prod Trivialization.continuousLinearEquivAt_prodₓ end /-! ### Pullbacks of vector bundles -/ section variable (R 𝕜 : Type*) {B : Type*} (F : Type*) (E : B → Type*) {B' : Type*} (f : B' → B) instance [i : ∀ x : B, AddCommMonoid (E x)] (x : B') : AddCommMonoid ((f *ᵖ E) x) := i _ instance [Semiring R] [∀ x : B, AddCommMonoid (E x)] [i : ∀ x, Module R (E x)] (x : B') : Module R ((f *ᵖ E) x) := i _ variable {E F} [TopologicalSpace B'] [TopologicalSpace (TotalSpace F E)] [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [TopologicalSpace B] [∀ x, AddCommMonoid (E x)] [∀ x, Module 𝕜 (E x)] {K : Type*} [ContinuousMapClass K B' B] instance Trivialization.pullback_linear (e : Trivialization F (π F E)) [e.IsLinear 𝕜] (f : K) : (@Trivialization.pullback _ _ _ B' _ _ _ _ _ _ _ e f).IsLinear 𝕜 where linear _ h := e.linear 𝕜 h #align trivialization.pullback_linear Trivialization.pullback_linear instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩ refine' ((continuousOn_coordChange 𝕜 e e').comp (map_continuous f).continuousOn fun b hb => hb).congr _
rintro b (hb : f b ∈ e.baseSet ∩ e'.baseSet)
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear' := by rintro _ ⟨e, he, rfl⟩ infer_instance continuousOn_coordChange' := by rintro _ _ ⟨e, he, rfl⟩ ⟨e', he', rfl⟩ refine' ((continuousOn_coordChange 𝕜 e e').comp (map_continuous f).continuousOn fun b hb => hb).congr _
Mathlib.Topology.VectorBundle.Constructions.184_0.ZrgS90NPsSlDzPQ
instance VectorBundle.pullback [∀ x, TopologicalSpace (E x)] [FiberBundle F E] [VectorBundle 𝕜 F E] (f : K) : VectorBundle 𝕜 F ((f : B' → B) *ᵖ E) where trivialization_linear'
Mathlib_Topology_VectorBundle_Constructions